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Presenters

� Paul Fischer

– spectral element overview

– Nek5000

– Prenek

� Aleks Obabko    ( & Hank Childs, LBL)

– VisIt overview

� Additional help

– Shashi Aithal – Nek5000 on fusion, RANS development

– Yulia Peet      – multidomain coupling

– Katie Heisey – automated build/test suite, example suite, 

mesh partitioner

– Stefan Kerkemeier – principal software engineer
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Objectives

�Course Objectives:

– Provide an overview of Nek5000 capabilities

– Introduce users to Nek5000 and VisIt usage

�By the end of the day, you should be able to run some basic 

flow simulations 
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Outline

�Nek5000 capabilities

�Equations, timestepping, and SEM basics

�Workflow example

– Setting initial and boundary conditions

– Basic runtime analysis

– Parallel / serial issues that you should understand

�Using VisIt to analyze results

�Mesh generation options

– Building meshes with genbox, prenek, and morphing

�Walking through examples; hands on simulations
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Some Resources

� Nek5000 wiki page (google nek5000)

� www.mcs.anl.gov/~fischer/Nek5000
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Part I

�Nek5000 capabilities

– Gallery

– Brief history

– Equations solved

– Features overview:

• Spectral element discretization

• Convergence properties  (nek5_svn/examples)

• Scalability
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Applications

Clockwise from upper left:

� Reactor thermal-hydraulics

� Astrophysics

� Combustion

� Oceanography

� Vascular flow modeling
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Coarse DNS: Channel Flow at Reb=13,000

Simulations by J. Ohlsson, KTH, Stockholm
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Separation in an Asymmetric Diffuser

� Flow separation and recovery

� DNS at Re=10,000: E=127750, N=11, 100 convective time units

� Comparison w/ exptl results of Cherry et al.

u=.4U

SEM             expt.

Axial Velocity 

Pressure Recovery

. . . . Expt

SEM

Ohlsson, Schlatter, F., and Henningson,, JFM (2010)
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Low Re Turbulence in Complex Domains

Arteriovenous graft flow @ Re=1200

Loth, F., Bassiouny, Ann. Rev. Fluid Mech. (2008) 
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Influence of Reynolds Number and Flow Division on u
rms

Validated simulations allow 
prediction of the relative 
influences of flow division 
and Reynolds number on 
transition to turbulence in 
arteriovenous grafts.

urms
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Nek5000 LES Validation: T-Junction Studies
E. Merzari ANL

Square T-junction simulation and comparison with experimental data

– 20 M points, first point at y+ < 1,  Reout = 7000

1 Merzari et al., Proper Orthogonal Decomposition of the flow in a T-junction, Proc. ICAPP (2010)

2 Hirota et al., Exptl Study on Turbulent Flow and Mixing in Counter-Type T-junction, J. Therm. Sci. & Tech. 3,  157 – 58 (2008)
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NEA/OECD Blind T-Junction Benchmark

� Thermal striping experiment with hot/cold inlets at Re ~ 105

� Inlet velocity and temperature data provided by Vattenfall.

� Of 29 entries, Nek5000 submission ranked 1st and 6th, respectively, in 

temperature and velocity prediction (CFD4NRS 2010)
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Velocity Comparison Downstream of T-junction 

� Medium resolution results are in excellent agreement at x=1.6 & 2.6

� Experiment (Re=90K) exhibits more rapid recovery of profile than simulation (Re=40K)

– Horizontal position, y – –Vertical position, z –

Lo-res    Re=40K

Med-res Re=40K

Expt Re=90K
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Parallel Scaling:  Subassembly 217 Wire-Wrapped Pins

– 3 million 7th-order spectral elements (n=1.01 billion)

– 16384–131072 processors of IBM BG/P

www.mcs.anl.gov/~fischer/sem1b

η=0.8 @ 

P=131072

Parallel Scaling

7300 pts/
processor
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Nek5000 / Star Cross-Channel Velocity Comparison

HEDL geometry 

Reh = 10,500

W.D. Pointer et al., Simulations of Turbulent Diffusion in 

Wire-Wrapped Sodium Fast Reactor Fuel Assemblies,

Best Paper Award, FR09, Kyoto (2009)
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Nek5000 Brief History

� DNS / LES code for fluid dynamics, heat transfer, MHD, combustion,…

– 100K lines of code:    f77  (70K)   &   C  (30K)

– Interfaces w/ VisIt & MOAB/Cubit

� Based on high-order spectral element method (Patera ’84, Maday & Patera ’89)

– Started as Nekton 2.0.  First 3D SEM code.          (F., Ho, & Ronquist, ‘86-’89)

� First commercially-available code for distributed memory computers 

(marketed by Fluent as Nekton into the mid 90s)

� Nek5000 is a highly scalable variant of Nekton

– Gordon Bell Prize in HPC, 4096 processors   (Tufo & F. ’99)

– 20% of peak on 262,000 processors of BGP     (Kerkemeier, Parker & F. ’10)



Argonne National 
Laboratory

Spectral Element Overview

� High-order FEM featuring

– Minimal numerical dispersion/dissipation  (Nth order accuracy, N=5-15, typ.)

– Loosely coupled elements  (C0 continuity between elements)

– Tightly coupled dofs within elements (full stiffness matrices – never formed)

� Standard domain decomposition + 

message-passing based parallelism

� Iterative solvers imply local work 

with dense operators, followed by 

data exchanges to update interface 

values
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Why High-Order ?

Large problem sizes enabled by peta- and exascale computers allow      

propagation of small features (size λ) over distances L >> λ.

– Dispersion errors accumulate linearly with time: 

~|correct speed – numerical speed| * t ( for each wavenumber )

� errort_final ~ ( L / λ ) * | numerical dispersion error |

– For fixed final error εf, require:  numerical dispersion error ~ (λ /  L)εf, << 1

– High-order methods most efficiently deliver small dispersion errors
(Kreiss & Oliger 72,  Gottlieb et al. 2007)
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Spectral Element Convergence: Exponential with N
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SEM Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32   

grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)
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Strengths of Nek5000

�High-order accuracy at low cost

– Extremely rapid (exponential) convergence in space

– 3rd-order accuracy in time

�Highly scalable

– Fast scalable multigrid solvers

– Scales to > 290,000 processors with ~104 pts/proc on BGP

�Extensively tested

> 10s of platforms over 25 years

> 150 journal articles & > 60 users worldwide

> 400 tests after each build to ensure verified source 

(more tests to be added)
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� Magneto-rotational instability                 (Obabko, Cattaneo & F.)

– E=140000, N=9  ( n = 112 M ),  P=32768  (BG/L)

– ~ 1.2 sec/step

– ~ 8 iterations / step for U & B

– Key is to have a scalable coarse-grid solver

Iterations / Step

ooo – U

ooo - B

Solver Performance: Hybrid Schwarz-Multigrid
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Scaling to P=262144 Cores

Parallel Efficiency for Autoignition Application:

> 83% on P=131K, for n/P ~ 6200,   E=810,000,  N=9

> 73% on P=131K, for n/P ~ 3100,   E=810,000,  N=7

# Cores

BG/P Strong Scaling: P=8192 – 131072                               P=32768 – 262144

32768    65536         131072  163840                  262144

# Cores

Parallel Efficiency, Model Problem:

> 70% on P=262K

> 7 billion points ( tests n > 231 )

� Production combustion and reactor simulations on ALCF BG/P demonstrate scaling 
to P=131072 with n/P ~ 5000-10,000 and η ~ .7

� Test problem with 7 billion points scales to P=262144 on Julich BG/P with η ~ .7
– tests 64-bit global addressing for gs communication framework

Stefan Kerkemeier

ETHZ / ANL
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Limitations of Nek5000

�No steady-state NS  or RANS:

– unsteady RANS under development / test – Aithal

�Lack of monotonicity for under-resolved simulations

– limits, e.g., LES + combustion

– A high priority for 2011-12

�Meshing complex geometries:

– fundamental: meshing always a challenge;

hex-based meshes intrinsically anisotropic

– technical: meshing traditionally not supported as part
of advanced modeling development
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Mesh Anisotropy

A common refinement scenario (somewhat exaggerated):

� Refinement propagation leads to

– unwanted elements in far-field

– high aspect-ratio cells that are detrimental 

to iterative solver performance  (F. JCP’97)

Refinement in 

region of interest…

yields unwanted high aspect-ratio

cells in the far field
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Some Meshing Options

� genbox:  unions of tensor-product boxes

� prenek:   basically 2D + some 3D or 3D via extrusion (n2to3)

�Grow your own: 217 pin mesh via matlab; BioMesh

� 3rd party:  CUBIT + MOAB, TrueGrid, Gambit, Star CD

�Morphing:
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Equations, timestepping, and 
spectral element formulation

…but first, a bit of code structure.

Part 2 (a)
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nek5_svn repository

� Key subdirectories in the repo:

– nek5_svn

• trunk

– nek    – makenek script and source files

– tools  – several utilities (prenek, genbox, etc.) and scripts

• examples – several case studies

� Typical steps to run a case:

– Create a working directory and copy contents of a similar example 

case to this directory

– Modify case files to suit

– Copy makenek from nek and type makenek <case>

– Run job using a script (tools/scripts) and analyze results (postx/VisIt)
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nek5_svn repository

� nek5_svn

|-- 3rd_party

|-- branches

|-- examples

|   |-- axi

|   |-- benard

|   |-- conj_ht

|   |-- eddy

|   |-- fs_2

|   |-- fs_hydro

|   |-- kovasznay

|   |-- lowMach_test

|   |-- moab

|   |-- peris

|   |-- pipe

|   |-- rayleigh

|   |-- shear4

|   |-- timing

|   |-- turbChannel

|   |-- turbJet

|   `-- vortex

|-- tags

|-- tests

`-- trunk

� nek5_svn

|-- :

|-- :

`-- trunk

|-- nek 

|   |         :

|   |-- source files….

|   |         :

`-- tools

|-- amg_matlab

|-- avg

|-- genbox

|-- genmap

|-- makefile

|-- maketools

|-- n2to3

|-- nekmerge

|-- postnek

|-- prenek

|-- reatore2

`-- scripts
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Base Nek5000 Case Files

� SIZE – an f77 include file that determines 

– spatial dimension (ldim =2 or 3)

– approximation order (lx1,lx2,lx3,lxd)  - N := lx1-1

– upper bound on number of elements per processor:  lelt

– upper bound on total number of elements, lelg

� <case>.rea – a file specifying

– job control parameters ( viscosity, dt, Nsteps, integrator, etc. )

– geometry – element vertex and curvature information

– boundary condition types

– restart conditions

� <case>.usr – f77 source file specifying

– initial and boundary conditions

– variable properties

– forcing and volumetric heating

– geometry morphing

– data analysis options: min/max, runtime average, rms, etc.
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Snapshot of SIZE
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Snapshots of .rea file

� Parameters section � Geometry and boundary conditions



Argonne National 
Laboratory

Snapshot of .usr file
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Derived Nek5000 Case Files

� <case>.re2 – binary file specifying

– geometry – element vertex and curvature information

– boundary condition types

This file is not requisite for small problems but important for element 

counts E >  ~10,000

� <case>.map – ascii file derived from .rea/.re2 files specifying

– mesh interconnect topology

– element-to-processor map

This file is needed for each run and is generated by running the

“genmap” tool (once, for a given .rea file).

� amg…dat – binary files derived from .rea/.re2 files specifying

– algebraic multigrid coarse-grid solver parameters

These files are needed only for large processor counts (P > 10,000) 

and element counts (E > 50,000).
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Equations, timestepping, and 
spectral element formulation

Part 2 (b)
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Outline

�Nek5000 capabilities

�Equations, timestepping, and SEM basics

�Workflow example

– Setting initial and boundary conditions

– Basic runtime analysis

– Parallel / serial issues that you should understand

�Using VisIt to analyze results

�Mesh generation options

– Building meshes with genbox, prenek, and morphing

�Walking through examples; hands on simulations
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Equation Sets (2D/3D)

� Incompressible Navier-Stokes plus energy equation

plus additional passive scalars:

�Also supports incompressible MHD, low Mach-number hydro, 

free-surface, and conjugate heat transfer formulations.
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Steady State Equations

�Steady Stokes (plus boundary conditions):

�Steady conduction (plus boundary conditions):
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Constant Property Equation Set

� Incompressible Navier-Stokes + energy equation 

� In Nek parlance, material properties specified in .rea file as:

dimensional nondimensional (convective time scale)

or as variable properties in f77 routine uservp()  (.usr file)

� Nek provides a scalable framework to advance these equations with user-defined 

properties.   LES & RANS can be incorporated in this framework. (See /examples.)
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Incompressible MHD

— plus appropriate boundary conditions on u and B

� Typically, Re >> Rm >> 1

� Semi-implicit formulation yields independent Stokes problems 
for u and B
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Incompressible MHD, Elsasser Variables

— A pair of Oseen problems:   z- convects z+ ,      z+ convects z-

— Similar form for Re ^= Rm exists.   

— A reasonable starting point for LES development…
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Timestepping
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Navier-Stokes Time Advancement

�Nonlinear term:  explicit via BDFk/EXTk or characteristics 

(Pironneau ‘82) 

� Linear Stokes problem: pressure/viscous decoupling:

– 3 Helmholtz solves for velocity    

– (“easy” w/ Jacobi-preconditioned CG)

– (consistent) Poisson equation for pressure 

– (computationally dominant)
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MHD Time Advancement

1. Compute nonlinear contributions (explicit, in Elsasser form, dealiased)

2. Solve well-conditioned Helmholtz problems for ui
n, i=1,3

3. Filter ui
n

4. Solve consistent Poisson problem for p n

5. Compute div-free correction of ui
n

6. Repeat 2. – 4. for Bi
n
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Timestepping Design

� Implicit:

– symmetric and (generally) linear terms,

– fixed flow rate conditions

� Explicit:

– nonlinear, nonsymmetric terms,

– user-provided rhs terms, including 

• Boussinesq and Coriolis forcing

� Rationale:

– div u = 0 constraint is fastest timescale

– Viscous terms: explicit treatment of 2nd-order derivatives � ∆t ~ O(∆x2) 

– Convective terms require only ∆t ~ O(∆x)

– For  high Re, temporal-spatial accuracy dictates ∆t ~ O(∆x)

– Linear symmetric is “easy” – nonlinear nonsymmetric is “hard”
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BDF2/EXT2 Example
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BDF2/EXT2 Example
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BDF2/EXT2 Example
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Stability of ABk, BDFk/EXTk Timesteppers

� Derived from model problem:

� Crucially, the chosen schemes encompass part of the imaginary axis. 

Important for high Reynolds number flows.

Stability Regions in the λ∆t Plane



Argonne National 
Laboratory

BDFk/EXTk

� BDF3/EXT3 is essentially the same as BDF2/EXT2

– O(∆t3) accuracy

– essentially same cost  

– accessed by setting Torder=3 (2 or 1) in .rea file

� For convection-diffusion and Navier-Stokes, the “EXTk” part of the 

timestepper implies a CFL (Courant-Friedrichs-Lewy) constraint

� For the spectral element method, ∆x ~ N -2, which is restrictive.

– We therefore often use a characteristics-based timestepper.

(IFCHAR = T in the .rea file)
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Characteristics Timestepping

� Apply BDFk to material derivative, e.g., for k=2:

� Amounts to finite-differencing along the characteristic leading into xj
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Characteristics Timestepping

�∆t can be >> ∆tCFL (e.g., ∆t ~ 5-10 x ∆tCFL )

�Don’t need position (e.g., Xj
n-1) of characteristic departure point, 

only the value of un-1(x) at these points.

These values satisfy the pure hyperbolic problem:

which is solved via explicit timestepping with ∆s ~ ∆tCFL
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Spatial Discretization
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Spectral Element Method (Patera 84, Maday & Patera 89)

� Variational method, similar to FEM, using GL quadrature.

� Domain partitioned into E high-order quadrilateral (or hexahedral) elements 

(decomposition may be nonconforming - localized refinement) 

� Trial and test functions represented as N th-order tensor-product polynomials 
within each element.  (N ~ 4 -- 15, typ.)

� EN 3 gridpoints in 3D,  EN 2 gridpoints in 2D.

� Converges exponentially fast with N for smooth solutions. 

3D nonconforming mesh for 

arterio-venous graft simulations:

E = 6168 elements, N = 7
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Spectral Element Method: Poisson Example
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Spectral Element Method: Poisson Example
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SEM Function Representation

� Key point is that there is a continuous representation of all variables:

� Since φj(x) is known a priori, we know how to differentiate and integrate.

� Moreover, choose φjs to be computationally convenient
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SEM Function Representation

� SEM choices for φφφφj :

– High-order polynomials on each element

– Compactly supported (sparse matrices, highly parallel)

– Stable Lagrangian interpolants:

• Basis coefficients are also grid-point values

– Easy to implement boundary conditions

– Grid-points chosen to be Gauss-Lobatto-Legendre quadrature 

points: diagonal mass matrix and low-cost operator evaluation

– Local tensor-product bases:  

• ijk indexing   (low storage & minimal indirect addressing)

• Matrix-free fast tensor-product operator evaluation:         (Orszag ’80)

– memory is O(n), work is O(nN) – Not O(nN3) !!
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How to get to high-order?  Step 1:  1D

� Stable high-order basis for Nth-order polynomial approximation space:

– poor choices:

– good choices:

hi(x)
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Condition Number of 1D Stiffness Matrix

GLL Nodal Basis � good conditioning, minimal round-off error

Monomials:  xk

Uniform Points

GLL Points ~ N 3
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How to get to high-order?  Step 2:  1D

� Replace integrals with Gauss-Lobatto-Legendre quadrature:

with

where

� Yields a diagonal mass matrix; preserves spectral accuracy.

(However, beware stability issues….)
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Extension to 2D

N=10

N=4

Nodal bases on the Gauss-Lobatto-Legendre points:

basis coefficients
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Matrix-Matrix Based Derivative Evaluation

� Local tensor-product form  (2D),

allows derivatives to be evaluated as matrix-matrix products:

mxm

hi(r)
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Mapped Geometries

2D basis function, N=10
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Notes about Mapped Elements

� Best to use affine (i.e., linear) transformations in order to preserve 

underlying GLL spacing for stability and accurate quadrature.

� Avoid singular corners - ~180o or ~0o

� Avoid high-aspect-ratio cells, if possible
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Multidimensional Integration

� Given that we have Lagrangian interpolants based on GLL quadrature 

points, we have

� In particular,

� In Nek, this vector reduction is implemented as:  alpha = glsc2(u,bm1,n)
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� For a deformed spectral element, Ω k, 

� Operation count in Rd is only O (N d+1) not O (N 2d) [Orszag ‘80 ]

� Memory access is 7 x number of points  (Grr ,Grs, etc., are diagonal )

� Work is dominated by matrix-matrix products involving Dr , Ds , etc.

Local “Matrix-Free” Stiffness Matrix in 3D
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Generic SEM Operator Evaluation

� Spectral element coefficients stored on element basis ( uL not u )

� Decouples complex physics (AL) from communication (QQT) 

local work (matrix-matrix products)

nearest-neighbor (gather-scatter) exchange
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Navier-Stokes Discretization Options

� Imposition of the constraint div u = 0 is a major difficulty in solving the incompressible 
Navier-Stokes equations, both from theoretical and implementation perspectives.  

� Was not well-understood till the mid-80s (give, or take…).

� The fundamental difficulty is that the discrete operators do not commute, except under 
special circumstances (e.g., Fourier bases).

� Nek supports two distinct approaches:

– Option 1 (PN-PN-2): 

• discretize in space using compatible approximation spaces

• solve coupled system for pressure/velocity

– Option 2 (PN-PN, or splitting): 

• discretize in time first

• take continuous divergence of momentum equation to arrive at a Poisson 
equation for pressure, with special boundary conditions
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P
N

- P
N-2

Spectral Element Method for Navier-Stokes (MP 89)

Gauss-Lobatto Legendre points
(velocity)

Gauss Legendre points
(pressure)

Velocity, u in PN ,     continuous

Pressure, p in PN-2 ,  discontinuous
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Consistent Splitting for Unsteady Stokes
(MPR 90, Blair-Perot 93, Couzy 95)

�E - consistent Poisson operator for pressure, SPD

– boundary conditions applied in velocity space

– most compute-intensive phase 
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Comparison of P
N

- P
N-2

and P
N

- P
N

Options in Nek 

PN - PN-2 PN – PN

– SIZE: lx2=lx1-2 lx2=lx1

– pressure: discontinuous continuous

– solver: E = DB-1DT A  (std. Laplacian)

– preconditioner: SEMG Schwarz (but to be upgraded)

– free-surface Yes No

– ALE Yes No

– low Mach No Yes

– LES OK Better

– low Re Better OK

– var. prop. Implicit (stress formulation) semi-implicit

– spectrally accurate Yes Yes

� Nek will ensure that the problem type is compatible with the discretization choice.

� For most cases, speed is determined by the pressure solve, which addresses the fastest timescales 
in the system (the acoustic waves).

– For PN - PN-2, the solver has been highly optimized over the last 15 years.

– The PN - PN version was developed by the ETH group (Tomboulides, Frouzakis, Kerkemeier) 

for low Mach-number combustion and has only recently been folded into the production 
Nek5000 code.
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Navier-Stokes Boundary Conditions

� A few key boundary conditions are listed below.

� There are many more, particularly for moving walls, free surface, etc.

� Special conditions include:

– Recycling boundary conditions (special form of “v”)

– Accelerated outflow to avoid incoming characteristics
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Thermal Boundary Conditions

� A few key boundary conditions are listed below.
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Workflow Example

Part 3
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Outline

�Nek5000 capabilities

�Equations, timestepping, and SEM basics

�Workflow example

– Parallel / serial issues that you should understand

– Setting initial and boundary conditions

– Basic runtime analysis

�Using VisIt to analyze results

�Mesh generation options

– Building meshes with genbox, prenek, and morphing

�Walking through examples; hands on simulations
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Serial / Parallel Issues

� Locally, the SEM is structured.

�Globally, the SEM is unstructured.

�Vectorization and serial performance derive from the 
structured aspects of the computation.

�Parallelism and geometric flexibility derive from the 

unstructured, element-by-element, operator evaluation.

�Elements, or groups of elements are distributed across 

processors, but an element is never subdivided.
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Parallel Structure

� Elements are assigned in ascending order to each processor

Serial, global element numbering

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1

Parallel, local element numbering



Argonne National 
Laboratory

Parallel Structure

� For the most part, don’t care about global element numbering

– (We’ll show some examples where one might)

� Key point is that, 

– on proc 0, nelt=2       (nelt = # elements in temperature domain)

– on proc 1, nelt=3       (nelv = # elements in fluid domain, usually = nelt)

Serial, global element numbering

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1

Parallel, local element numbering
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Parallel Structure

� Arrays that distinguish which processor has which elements:

– proc 0 proc 1

• nelt=2 nelt=3

• lglel=(2,5) lglel=(1,3,4)

� Common arrays (scaling as nelgt, but only two such arrays):

– gllel=(1,1,2,3,2), gllnid=(1,0,1,1,0)

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1
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Serial Structure

� All data contiguously packed (and quad-aligned):

real u(lx1,ly1,lz1,lelt)

• Indicates that u is a collection of elements, 

e=1,…,Nelt =< lelt, each of size (N+1)d, d=2 or 3
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Serial / Parallel Usage

� A common operation (1st way…)

s=0

do e=1,nelv

do iz=1,nz1

do iy=1,ny1

do ix=1,nx1

s=s+u(ix,iy,iz,e)

enddo,…,enddo

� Parallel Version

s=0

do e=1,nelv

do iz=1,nz1

do iy=1,ny1

do ix=1,nx1

s=s+u(ix,iy,iz,e)

enddo,…,enddo

s=glsum(s,1)
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Serial / Parallel Usage

� A common operation (2nd way…)

n=nx1*ny1*nz1*nelv

s=0

do i=1,n

s=s+u(i,1,1,1)

enddo

� Parallel Version

n=nx1*ny1*nz1*nelv

s=0

do i=1,n

s=s+u(i,1,1,1)

enddo

s=glmax(s,1)
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Serial / Parallel Usage

� A common operation (3rd way…)

n=nx1*ny1*nz1*nelv

s=glsum(u,n)

– If you want a local max:

s=vlsum(u,n)

– Note:  Important that every processor calls glmax()!!

� Parallel Version

n=nx1*ny1*nz1*nelv

s=glsum(u,n)
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Structure of .usr file

� Let’s look at a file!
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Structure of .rea file

� Let’s look at Kovasznay example…
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Starting Nek5000 on Fusion

� Install source and build tools

– ssh to fusion.lcrc.anl.gov

– Add  +pgi-9.0 to your .soft file  and   “resoft”

– svn co https://svn.mcs.anl.gov/repos/nek5 nek5_svn

– cd nek5_svn/trunk/tools  and specify compiler in “maketools”

F77="pgf77"

CC="pgcc“

– maketools all
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Running First Case:  Eddy Problem

� cd ~nek5_svn/examples;  mkdir t1; cd t1; cp ../eddy/* .

� cp ~nek5_svn/trunk/nek/makenek .

�makenek eddy_uv

� nekb eddy_uv 1     (runs on 1 node = 8 cores)

– Results output to:

• logfile – stdout:

– timestepping info, computed errors, etc.

• eddy_uv.fld01,…,eddy_uv.fld12

– velocity & pressure distributions (binary)
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A quick peek at the data

� Type “postx &”,  then

click type comment

1. SET TIME 12 load fld12

2. SET QUANTITY

3. VORTICITY

4. PLOT

� Final error is in eddy_uv.fld11

� To check the error:

click type comment

1. SET TIME 11 load fld11

2. SET QUANTITY

3. VELOCITY

4. MAGNITUDE

5. PLOT
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Eddy Example

�Q:  What does the error look like with outflow inflow/boundary 
conditions?

�A:   

– Make a new mesh

– Change the bcs in .rea and .usr files

– Look at the error

�To build the new mesh, we’ll use genbox
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genbox
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genbox

� genbox provides a simple way to generate a basic box mesh 
comprising an nelx x nely x nelz array of elements, or a composite 

mesh with several boxes.

� It uses an existing base mesh as input to specify parameters, etc. 
and generates a new set of elements and associated boundary 

conditions.

� The output is “box.rea”

� One can then run “genmap”

� Assuming the code is already compiled with an appropriate .usr file, 
one can then run Nek5000
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genbox

� genbox geometry (2D) – uses a symmetric face ordering

� BC:   v  ,O  ,W   ,SYM,     ,  yields

– f1:  “velocity”

– f2: “outflow”

– f3: “wall”

– f4: “symmetry”

y

x

f4

f1  f2

f3
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genbox example, 2D

� genbox generates a 2D or 3D input file “box.rea”
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genbox, 3D

� genbox face ordering in 3D:

y

x

z

f4

f1  f2

f6

f3
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Multibox Case:  Backward Facing Step

� BCs for internal faces are blank

� Use additional boxes for more control over mesh grading, etc.
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genbox conventions

� # indicates comment

� If nelx (y, or z) > 0, user provides x0,…,xnelx in ascending order,         
possibly on multiple lines

� If nelx (y, or z) < 0, user provides x0 < xnelx , and ratio, so that domain       
[x0, xnelx] is partitioned into nelx subdomains, with dxi+1 = ratio*dxi

� If ndim < 0, genbox generates .rea and .re2 (binary) file  [new convention]

� “B” or “b” for Box indicates a box descriptor follows

� “C” or “c” for Circle indicates a circle descriptor (currently supported?)

� BCs must be 3 characters (including blanks) !

� Base input file must match dimension (2D or 3D) of the given case


