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Fig. 1. The user interface of our proposed FLDA system, including: (a) parameter setting panel for adjusting parameters in LDA
model; (b) MDS/Heatmap view with thumbnails of pathline previews embedded; (c) pathline view for rendering pathlines in 3D space;
(d) feature view. Projection in (b) is rendered as a density map in pseudo color, with distribution of the selected topic highlighted. (d)
in the pixel-oriented style consists of two parts: the attribute-time view at the top and the topic-time view at the bottom. Each column
represents one time step, while each row denotes a topic or an attribute.

Abstract —In this paper, we present a novel feature extraction approach called FLDA for unsteady �ow �elds based on Latent Dirichl et
allocation (LDA) model. Analogous to topic modeling in text analysis, in our approach, pathlines and features in a given �ow �eld are
de�ned as documents and words respectively. Flow topics are then extracted based on Latent Dirichlet allocation. Different from other
feature extraction methods, our approach clusters pathlines with probabilistic assignment , and aggregates features to meaningful
topics at the same time. We build a prototype system to support exploration of unsteady �ow �eld with our proposed LDA-bas ed
method. Interactive techniques are also developed to explore the extracted topics and to gain insight from the data. We conduct case
studies to demonstrate the effectiveness of our proposed approach.

Index Terms —Flow visualization, Topic model, Latent Dirichlet allocation (LDA)

1 INTRODUCTION

In recent years, there is an increasing demand on effective visualiza-
tion of multivariate unsteady �ow �eld data, especially in areas such
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as climate research, ocean research, air pollution research, etc. Visu-
alization and analysis for such data is quite dif�cult and challenging,
due to the complexity of the data and visualization tasks. In general,
such �ow visualization involves exploring attribute space, geometry
space and advection simultaneously.

Flow �eld data has been long studied in visualization community
for years. Traditional �ow visualizations including texture-based [30]
and geometry-based [36] methods seldom consider the associated at-
tribute information. They may also suffer from visual clutter problem
when dealing with 3D �ow �eld.

Now more visualization methods are developed to detect, identify
and extract interesting features from the �ow �eld. One genre is to
manually de�ne features at �rst, after which the system will try to de-
tect corresponding features from �ow �eld [28, 46, 39, 8]. Salzbrunn
et al. [39] has shown that any suitable set of pathline predicates can be
interpreted as features in unsteady �ow structures. However, insight-
ful features are hard to de�ne when scientists do not have enough prior
knowledge about the data, especially when multivariate information
involved. Another genre takes clusters as features. The �ow �eld data
is �rst transformed to a space easier for exploration, then automatic
algorithm or manual exploration is conducted to identify and extract



clusters. Projection methods are more effective in revealing the intrin-
sic features of �ow �eld data by mapping data to lower dimensions.
Daniels et al. [22] proposed to project samples of 2D �ow into 2D
space to extract important spatial structures. Streamlines can also be
projected according to their geometry distances [38]. When it comes
to multivariate unsteady �ow �eld, Lagrangian-based Attribute Space
Projection (LASP) proposed by Guo et al. [17] is capable of projecting
massive pathlines based on their distances in the attribute space. How-
ever, these methods often suffer from the gap between the data space
and feature space. The identi�ed clusters lack semantic meaning to
help understand these intrinsic structures.

In this paper, we propose a novel unsteady �ow analysis method
based on Latent Dirichlet allocation (LDA) model, named theFlow
LDA, or FLDA in short. LDA model is widely used in text analysis to
study topics from a large corpus of documents which are naturally de-
composed into words. In FLDA, we de�nepathlinesas documents and
featuresas words respectively. After estimating the underlying model,
we obtain a list of topics which are fused from features de�ned, and
simultaneously pathlines are clustered into topics with probabilistic
assignment. Thetopicscan serve as connectors between the collection
of pathlines and the features.

FLDA can be regarded as a mixture of the two types of feature ex-
traction methods mentioned before. On the one hand, features are de-
�ned at �rst to describe expected facets of the �ow behaviors. FLDA
model will identify features containing those facets, but in a way of
fused topics, rather than as separated features. On the other hand,
FLDA can be treated as a probabilistic clustering method. We are able
to obtain semantic implications of clusters from LDA-derived topics,
which re�ect intrinsic patterns hidden in the �ow �eld data. More-
over, the probabilistic assignment gives a consecutive measurementof
the pathline-topic relationship, which could provide more insights into
clusters.

Although LDA model has been successfully applied to many re-
search �elds besides text analysis, including computer graphics, com-
puter vision [42, 9, 31] and even recently traf�c trajectory analy-
sis [12], it has not been systematically tested for �ow �eld visualiza-
tion. It is nontrivial to apply LDA model to �ow �eld data. The key
problem is how to de�ne features in FLDA, which is corresponding to
words in LDA model, and how to explain topics and their relationship
with pathlines and features. In the original LDA model for text anal-
ysis, words are naturally obtained from documents. When applied in
computer vision or computer graphics for segmentation, classi�cation
or pattern recognition, spatial regions are usually used as words. How-
ever, in �ow �eld analysis, it is not suf�cient to consider only spatial
positions. Especially for multivariate unsteady �ow �eld, we expect
to involve multivariate features. Therefore, we need to carefully de-
�ne wordsin our FLDA model, in order to obtain a good description
of the expected facets. We have tackled the feature de�nition prob-
lem and apply the FLDA model for complexity �ow visualization, as
a new approach to understand and explore complex �ow �elds. We
also developed a set of interactive techniques for better understanding
the extracted topicsand their relationship with features and pathlines.

The remainder of this paper is organized as follows. We describe
the background of FLDA model and �ow �eld visualization and anal-
ysis techniques in Section 2. In Section 3, we introduce our method
on the basis of LDA model, and describe the pipeline of our prototype
system. We give more details about the parameter settings of FLDA
model, and visualization techniques in Section 4. Case studies are
shown in Section 5 to demonstrate the effectiveness of our method.
In Section 6, we compare the proposed FLDA method with other ap-
proaches. At last, we conclude this paper with a brief review and dis-
cuss about the future work.

2 BACKGROUND

Our work has mainly three relevant �elds: multivariate �ow �eld vi-
sualization, LDA analysis methods, and �ow exploration methods. In
this section, we brie�y review literature in these �elds.

2.1 Multivariate Flow Field Visualization

Multivariate �ow �eld visualization is a challenging task due to the
complexity of the data. Using linked multi-dimensional visualizations
for feature extraction and rendering is a major methodology to tackle
this problem.

One of the most popular multi-dimensional data visualization tools
is Parallel Coordinate Plot (PCP) [23]. PCP-based �ow �eld visualiza-
tions had been proposed in recent years [2, 4, 47]. Akiba et al. [1, 2]
proposed a tri-space visualization combining time histogram, PCP and
the spatial rendering for identifying features in temporal, attribute and
spatial domain. Similarly, Blass et al. [4] used PCP for multivariate
analysis in a time-varying background, where features are spatially
rendered as isosurfaces. For multivariate particle data, Jones et al. [27]
deployed PCP to select particles for pathline generation.

Scatterplots coupled with dimension reduction techniques or de-
rived statistic information are also widely used. Chen et al. [11] pro-
posed a method to embed DTI �bers into 2D Multi-Dimensional Scal-
ing (MDS) based on their mutual mean distances, so as to alleviate the
clutter problems in 3D space. Guo et al. [18] proposed a seamless in-
tegration between PCP and MDS plots, which provides high ef�cient
feature extraction by avoiding context switching. Such approach is
further developed by Zhao et al. [47], combining Locally Linear Em-
bedding (LLE) with PCP for an easier edit on transfer functions. Hel-
mut proposed the SimVis system [15] that makes use of scatterplots
with linked brushes to select interesting features in particle simula-
tions. Jänicke et al. [25] transformed the attribute space into 2D point
clouds where special features could be distinguished without clutter or
obscurity. More recently, Maciejewski et al. [35] encoded attribute re-
lationships instead of projections in the scatterplot for better guidance
in 2D transfer function design. For vector �eld of �ow data, dimension
projection techniques give more insight by embedding �eld lines into
lower dimension spaces. For streamline embedding, Hausdorff dis-
tances are used as the distance metric [38] between seed points so that
the projection plot reveals spatial similarity of corresponding stream-
lines. To further consider multivariate behavior of unsteady �ow �eld,
LASP [17] extended the geometry space distance to attribute space
distance for traced pathlines. That method is capable of extracting
multivariate features in the Langragian perspective for unsteady �ow
data. Facing a similar data complexity problem, we adopt the MDS
to exhibit the relationship of pathlines in the attribute space, which
provides a carrier to visualize �ow topics from the multivariate facet.
For a better performance, we use the Pivot MDS [6] to reduce the
computational complexity.

Besides PCP and scatterplot, other approaches are also used to
show the relationships among variables. Sauber et al. [40] proposed
multi�eld-graphs, in which variables are hierarchically grouped for a
descendant correlation display in the spatial domain. Woodring and
Shen [44] used a spreadsheet and a tree map for showing the compari-
son relationship between attributes. Concerning data clustering in the
attribute space, Linsen et al. [33] also used the tree structure to present
the hierarchical structure, aligned with cluster contours shown in the
star coordinate context. From the information-theoretic aspect, Wang
et al. [41] adopted circular graph layout to present information trans-
fer between variables. Chen et al. [10] showed the static correlations
between samples extracted from the volume using scatterplot matrix.
Bruckner and M̈oller [7] split the simulation data into clusters, with a
star glyph to present the multivariate feature of each cluster.

2.2 Topic Model and LDA Analysis

Topic model is widely used in text analysis. Landauer et al. [29] pro-
posed the concept of Latent Semantic Analysis in 1988. Latent Seman-
tic Analysis add a latent semantic layer between documents and words.
Latent semantics are extracted from the relationship among words to
construct semantic space, where documents are then projected to ob-
tain a sparse representation. pLSI/pLSA [19, 20] introduced statistic
analysis and generative model based an LSA. pLSA solves synonyms
and polysemy problem, but suffers from over�tting. Blei et al. [5] pro-
posed the concept of topic model and related LDA model. LDA is a
multi-layer Beyasian model, including three layers, e.g. words, top-



ics, and documents. Every topic is a mixture of words, while every
document is a mixture of topics. By introducing Dirichlet distribution,
LDA model is able to avoid over�tting which pLSA suffers. Among
these two most popular topic models, pLSA is actually a special case
of LDA. After LDA model, lots of variations raise.

In text analysis, lots of visualization are proposed for the results
derived by LDA model. Termite [13] utilized a 2D table to represent
the distribution between keywords and topics, using size of circles to
indicate the probabilities. Documents can be projected to lower dimen-
sional space by considering not only the distances between words, but
also the distances between latent semantic topics [21, 24]. To visualize
the evolution of topics along time, TIARA [43] encoded the hotness of
topics using the width of rivers in ThemeRiver. TextFlow [14] further
used the metaphor of rivers to indicate the emerging, vanishing, merg-
ing and splitting events in topic models. LeadLine is also a river-like
visualization, but more emphasized on the bursting to topics hotness.
iVisClustering [32] not only provides various visualization techniques
for LDA model, but also enables users steering of LDA process. Be-
sides applications in text analysis �eld, LDA model has been adopted
in computer graphics and computer vision �eld [42, 9, 31] for various
purposes, such as segmentation, classi�cation, pattern recognition, etc.
In visualization of traf�c data, Chu et al. [12] use LDA model to dis-
cover hidden themes from trajectories data.

In this paper, we build a topic model for �ow �eld data to describe
the relationship between pathlines and features by introducing a latent
layer. Our prototype system provides several visualizations for LDA
results. We focus more on revealing the insight of topics, since topics
in our method have richer meaning.
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Fig. 2. Illustration of (a) typical LDA model and (b) our �ow L DA model.
Pathlines and features are de�ned to be equivalent to docume nts and
words in topic model respectively. Tc and Pr stands for features of tem-
perature and pressure respectively.

2.3 Exploration on Flow Field Data

Traditional �ow visualization methods, such as texture-based [30] and
geometry-based [36] methods, usually involvelittle user interaction.
More recently, interactive feature extraction techniques have been de-
veloped to help users explore �ow �eld. Parallel coordinates are often
used to visualize the scalar �eld in �ow data, where users are able
to brush numerical ranges to extract features [1, 2, 4]. Alternative to
parallel coordinates, projection approaches are able to reveal inherent
structures from data. 2D scalar samples are projected into 2D space
to extract important spatial structures. Streamlines and pathlines can
also be embeded into lower-dimensional space advection information
based on the distances in geometry space [38] and attribute space [17].
Users are able to extract rich features from projection plots.

Recently, graph-based visualization is emerging for �ow explo-
ration. TransGraph [16] is proposed to visualize information transi-
tion along time between blocks, where users can select different levels
of hierarchy. Ma et al. [34] proposed FlowGraph to explore the dual

relationships between streamlines and blocks with rich interaction and
query techniques. Jänicke et al. [26] extract local �ow patterns as
nodes in graph, and their transitions as edges where users can track
features over time. There are some work representing the attribute
relationship of scalar �eld using graph-like form [40, 3].

In our work, based on a novel perspective, FLDA, we pro-
vide a pixel-wised feature view, together with preview-facilitated
MDS/Heatmap view to help explore �ow �eld data.

3 OVERVIEW

In this work, we innovate a �ow �eld analysis method which is based
on LDA model, and implement a prototype system to support LDA-
based exploration on �ow �eld. In this section, we will �rst introduce
basics of LDA model and its usage in the topic analysis �eld. Then
we give our equivalent de�nition of LDA concepts in the �ow �eld
scenario. At last, we describe the pipeline of our prototype system.

3.1 Basics of LDA Model

Latent Dirichlet allocation (LDA) was �rst proposed by Blei et al. [5]
to explain why documents are similar from the latent topic level in-
stead of the word level. We �rst introduce some basics of typical LDA
model. The symbols used in this paper are listed in Table 1.

D Number of documents.
K Number of topics.
V Vocabulary.
dj Thej th document.
N j Number of words indj .

N Total number of words in all documents,
Typical

P D
j =1 N j .

LDA wij Thei th word indj document.
zij Topic assignment for wordwij .
� j Probability of topics in documentdj .
� k Probability of words in topick.
� Dirichlet prior for � .
� Dirichlet prior for � .

x Facet of �ow �eld,
Flow x 2 f Speed; Attribute; Angle; . . .g.
LDA F x Flow feature set de�ned on facetx.

Vf Vocabulary of �ow features,
S

x F x .

Table 1. Symbols used in this paper.

The LDA model is typically used to analyze topics in the corpus of
documents. The underlying generative process is that any document
dj is modeled as a mixture ofK topics, while any topick is character-
ized by a multinomial distribution� k over vocabularyV. Among all
variables, onlywij is observable, while others likezij , � j , and� k are
latent variables. LDA model generates observations of latent variables
using the following process:

1. For every documentdj , draw a topic distribution� j from a
Dirichlet prior with parameter� , i.e. � j � Dir (� ), where
j 2 f 1; � � � ; D g.

2. For every topick, draw a word distribution� k from a Dirich-
let prior with parameter� , i.e. � k � Dir (� ), wherek 2
f 1; � � � ; K g.

3. For word positioni in j th document, wherei 2 f 1; � � � ; N j g,
and j 2 f 1; � � � ; D g, choose a topic for this positionzij =
k � Multinomial (� j ), and then choose a word from the cho-
sen topicwij � Multinomial (� z ij ).

After the generative process is de�ned, the total probability of the
model can be described as:

P (W; Z; �; � ; �; � ) =
KY

i =1

P(� i ; � )
MY

j =1

P(� j ; � )
NY

t =1

P(Z j;t j�j )P (Wj;t j� Z j;t );



whereW; Z; �; � dontes the vector version ofwij ; zij ; � j , and� k re-
spectively. The model estimation process is to maximize the likelihood
function by Bayesian inference with parameters� and� . The original
model [5] uses variational inference method, while in our work, we
adopt an implementation using Gibbs sampling [37]. The time com-
plexity of one iteration isO(KDM ), whereM is the average length
of documents. It can be simpli�ed toO(KN ), whereN donates the
total number of words in all documents.

The LDA model can be applied as a document clustering method.
TheK topics can be treated as clusters, and the topic distribution� j

for the documentdj denotes the probabilities of membership to every
cluster. A more careful approach is to treat� j as a lower-dimensional
feature vector for every document, and conduct another clustering rou-
tine, such as k-means. However, in FLDA model, we choose the for-
mer approach, because we think the topics and distributions act as
better connectors between the data space and feature space.

3.2 FLDA Model

To employ LDA model in �ow �eld analysis, we need to de�ne equiv-
alent LDA concepts at the very beginning (Figure 2). Without loss
of generality, we give our de�nition on pathline data, which could be
easily extended to other kinds of �eldlines. In our FLDA model, we
considerpathlinesas the central subjects, which play a similar role as
documents do in the topic model. We then considerfeaturesas words,
with pathlines beingbags of features, which is analogous to the con-
cept of documents beingbags of wordsin topic model. For any facet
x of the �ow �eld, such as geometric, multivariate or temporal facet,
we can de�ne a feature setF x to describe different behaviors of the
selected facet. For example, we can de�ne features as blocks in spatial
domain to represent similar spatial behaviors, or as bins of the attribute
value to represent similar attribute behaviors, etc. In this way, any
pathlines sharing similar behaviors are considered to have common
features. All feature setsF x can then be united to an overall feature
vocabularyVf . In our prototype system, we provide a prede�ned vo-
cabulary containing feature sets of commonly concerned facets. Users
are free to choose a subset of prede�ned vocabulary or add their own
de�nitions to the existing vocabulary.

After de�ning the feature vocabularyVf , we pick out features for
every pathline to make itsfeature bag. The FLDA method uses the fea-
ture bags as input to estimate the underlying topic model. As results,
topics, distribution of topics per pathline, and distribution of features
per topic are generated. Similar to the LDA model, the derived topic
can be treated as a mixture of features. Meanwhile, pathlines are as-
signed to topics with probabilities.

The generated topics are depicted from two aspects, the feature side
and the pathline side. On the one hand, in order to provide good se-
mantic explanations for topics, it is important to choose appropriate
de�nitions of features. Easy as it seems in static data, the problem
is tricky in the time-varying background. In our prototype system, we
prefer to de�ne features as similar behaviors at a single timestep, rather

than over consecutive timesteps or the entire time span. In this way,
it is easier to decompose a topic along the time dimension to inspect
the evolution of corresponding behaviors. On the other hand, topics
can be treated as fuzzy clusters constructed by pathlines based on the
behaviors they shared. Pathlines convey rich multivariate information,
geometric information and temporal information, which makes it pos-
sible to extract topics from some facets and then explain them from
the others. While in text analysis, the documents only contain textual
information, thus the topics can only be extracted and explained from
the same aspect. From this point of view, topics in �ow �eld are more
explainable than those in text analysis.

3.3 Features De�nition

The input of LDA model is the bags of features, which is analogue to
the the bags of words in topic model. In topic model, documents can be
naturally decomposed into words. The order of words in one document
does not in�uence the results. However, a simple copy of the de�nition
doesn't work in the �ow �eld scenario. First of all, dividing pathlines
based on spatial location doesn't make much sense, since they rarely
share the same sample points. Such a trivial de�nition will lead to
meaningless results. More importantly, the advection information of
pathlines will be lost if we do not involve the order of sample points
into the FLDA model.

In our approach, we de�ne various kinds of features as words to
describe �ow behaviors from different facets. The prede�ned feature
sets for every sample point on a pathline are listed below. All these
feature sets are assembled to a huge vocabularyVf .

� Speed magnitude (F Speed).
� Attribute value (F Attr).
� Turning angle (F Angle).
� Spatial positions (F Block).
Words in topic models are always discrete, while features we de-

�ned in FLDA are usually from continuous numerical ranges (or
spaces). We divide the whole range or space into several bins or re-
gions, each of which corresponds to one feature. At the same time,
we add temporal information to distinguish between similar behaviors
but appeared at different moments. Even similar bins or regions in one
facet but at different timesteps correspond different features, which is
a major difference from the word de�nition in topic model. In this
way, topics generated could be decomposed along time dimension to
give more useful explanation for unsteady �ow �eld. There is a possi-
bility that feaures are de�ned as behaviors across several consecutive
timesteps. However, this type of features de�nitions will depend on
users' priori knowledge on data.

Take the facet of speed magnitude for example, we can generate a
feature set as follows: At timestept, the speed magnitude of all sample
points falls into an interval[at ; bt ]. We can draw a �nite sequence on
the interval

at = x t; 0 < x t; 1 < x t; 2 < � � � < x t;n t = bt ;
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which partitions the numerical range inton t equal-range subintervals.
Then we de�ne a speed magnitude featurest; � corresponding to each
subinterval, and collect all features at timestept, i.e.

st;i � [x t;i ; x t;i +1 ]; where0 � i < n t ; (1)
St = f st; 0 ; � � � ; st;n t � 1g:

By collecting all speed magnitude featuresSt at every timestep, we
obtain a feature set for speed magnitude facet,

F Speed� S =
T � 1[

t =0

St ; where0 � t < T:

We can de�ne other feature sets similarly. In this way, a feature vo-
cabulary is obtained based on the union of all prede�ned feature sets,

Vf = F Speed[ F Attr [ F Angle [ F Block [ � � �

We can also decompose the feature sets and the feature vocabulary
along the time dimension:

Vf (t) = F Speed(t) [ F Attr(t) [ F Angle(t) [ F Block(t) [ � � � ;

wheret donates one timestep.
The de�nition of feature vocabularyVf is �exible. On the one hand,

users could select one or multiple feature sets to construct a new fea-
ture vocabulary to meet their requirements. On the other hand, simple
feature de�nitions are not useless in our approach. Even with simple
features, FLDA model could generate meaningful topics by mixing
features to describe complicated �ow behaviors.

3.4 Pipeline

Based on FLDA model, we implement a prototype system to support
the visualization and exploration on multivariate �ow �eld data (Fig-
ure 3).

In our preprocessing step, we �rst extract pathlines from an un-
steady �ow �eld, together with multivariate information. Pathlines
are generated using adaptive Runge-Kunta method, and the resampled
with a �xed time interval. At the same time, we employ our previous
work, LASP [17], to project the multivariate pathlines into a 2D space
based on their distances in the attribute space along the advection, so
that instrinsic multivariate structures are revealed.

The FLDA model starts from desired feature de�nitions chosen by
users from the system presets. All features are generated from these
de�nitions according to the previous description. For every pathline,
the system then picks up those features whose corresponding behav-
iors are observed in it. After that, each pathline can be regarded as a
bag of features, which serves as the input of LDA model. The under-
lying latent topic model is then estimated, where topics, topic distri-
butions per pathline, and feature distributions per topic are generated.

In the visualization part, we create theMDS/Heatmap viewand
the feature viewto show the results. The MDS/Heatmap view gives
an overview of the topic distribution in the projection space, together
with thumbnail previews showing the spatial distribution of each topic.
The feature view visualizes temporal distributions of features for ev-
ery topic. Users are able to �nd out when and in which facets the
pathlines in the same topic resemble each other. Topic selection is
supported in both views. The MDS/Heatmap view can highlight path-
lines who have high degree of memberships in the selected topic. The
feature view then visualizes the temporal distribution of features for
every facet, where users are able to observe which facets of similar
behaviors are dominated in this topic, and when this happens. Apart
from the two views, we render those pathlines with high degree of
membership in the pathline view.

In the system, users are able to adjust the LDA parameters, includ-
ing feature vocabulary, the number of topic number, Dirichlet prior
� , � , the number of iterations, etc. Among them, feature de�nition
is signi�cantly responsible for the results. Besides the several pre-
sets provided by the system, users can also extend the vocabulary by
adding their own de�nitions on demand.

4 SYSTEM DETAILS

We implement a prototype system which employs FLDA for multivari-
ate �ow �eld analysis. We �rst introduce our system interface, where
users can explore the results of FLDA from various aspects. We then
give details on experiment under different parameter settings.

4.1 User Interface

The interface includes four parts: parameter setting panel, pathline
view, preview with MDS/Heatmap and feature view as shown in Fig-
ure 1.

4.1.1 Parameter Setting Panel

In the parameters setting panel (Figure 1(a)), users are able to choose
different feature sets to compose the feature vocabularyVf and set
necessary parameters. Users then launch FLDA analysis. Results gen-
erated are visualized in the three views.

4.1.2 Pathline View

The pathline view (Figure 1(c)) is set to visualize the spatial distribu-
tion of pathlines which have a high degree of membership to a speci�c
topic. Interactions like rotating, zooming and panning are provided
to enable an elaborative observation from different viewports. By in-
specting the spatial shapes of pathlines, users can estimate the behavior
coherence within a topic, so as to evaluate the rationality of topics.

4.1.3 Preview with MDS/Heatmap

In this view, we mainly focus on the topic distribution per document
� ( � ) generated by FLDA. The MDS/Heatmap view (Figure 1(b)) con-
sists of two parts, namely the MDS projection of the original pathlines
and the spatial previews of topics. This view mainly serves three pur-
poses:

1. Reveal the intrinsic multivariate structures of attribute space.
2. Provide an intuitive overview of all topics by embedding their

spatial distributions as previews.
3. Reveal the correlation of different topics by comparing the mul-

tivariate distributions of their members.

For the �rst purpose, we provide a LASP projection plot [17] to
present the distribution of pathlines. The distance of two pathlines
is de�ned in the attribute space with Lagrangian speci�cation, which
is calculated by accumulating the differences of attribute values at all
corresponding sample positions of pathlines. Two rendering styles are

b
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c

 Topic Highlighting 

Heatmap/MDS Switch

Fig. 4. Interactions supported in the MDS/Heatmap view. (a) The de-
fault MDS projection is rendered as a scatterplot. (b) When a topic is
selected, distribution of the data within this topic is highlighted using fo-
cus+context technique. (c) Users can switch the projection to a heatmap
style where the density information could be more clearly seen.
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Fig. 5. Visualization of FLDA results under different feature set de�nitions. (a) Feature sets of SPEED and Turning Angl e; (b) Feature set of P only;
(c) Feature set of TC only.

provided: the traditional scatterplot style and the heatmap style (Fig-
ure 4(b)). Users are allowed to change the projection style, depending
on whether individual data samples or density of the distribution is
the major concern. In the heatmap style, users can adjust the color
mapping to emphasize areas with different densities, so as to recover
details that would be hidden with an improper color scale.

For the second purpose, we introduce previews in the projection
plot to indicate the spatial distributions of topics. Each preview con-
tains a small snapshot of the pathline rendering result of the corre-
sponding topic. Pathlines in previews are kept the same temporal and
spatial range as in pathline view. To avoid clutter in previews, only a
subset of pathlines are rendered in the preview. The number of the sub-
set comes from a power function of original number of pathlines in the
topic. For every topick, the corresponding preview is anchored at its
central sample, which minimizes the distance to all samples weighted
by probability � j;k . A leader then emits from the anchor position to
its corresponding thumbnail. The previews are carefully arranged to
avoid overlaps, occlusions and line crossings, using a heuristic zone-
based labeling algorithm proposed by Wu et al. [45], which combines
genetic and greedy strategies to minimize the overall length of lines.
Users can select a topic by clicking on its preview, which results in
highlighting in the pathline view and the projection view.

For the last purpose, topic highlighting is introduced (Figure 4(b)).
In the scatterplot style, we adopt the focus+context strategy and high-
light those samples of high degree membership while fading out oth-
ers. The probability� j;k is considered as the degree of membership of
documentdj to topick. When in the heatmap style, we modulate the
density by the weights� j;k for every sample to emphasize distribution
of the chosen topick (Figure 4(c)). By viewing the distribution of the
topic, users can see clearly how its members resemble each other in
the attribute space. By switching between focuses, users can learn the
differences between topics.

Providing spatial previews greatly enhances users' comprehension
of the results. Firstly, embedding previews in the projection closely
relates the spatial and multivariate distributions of a topic without the
trouble to switch between contexts. Secondly, by viewing the snap-
shots before they drill down to details, users may gain an intuitive per-
ception about the spatial features of topics, which may cast a light on
the following exploration. At last, the small multiple strategy enables
users to compare different topics without switching between contexts.

4.1.4 Feature View

While the MDS/Heatmap view reveals correlations between pathlines
and topics� ( � ; � ) in the attribute space, the feature view (Figure 1(d))
visualizes the relationships between features and topics� ( � ; � ) in an
time-varying context. The feature view contains three parts: the topic
view, facet view for one selected topic, and time histogram for one
facet of one selected topic, all of which are of pixel-oriented style.
These three views enable a progressive exploration process for topic-
feature relationships.

In the topic view, each row shows the feature distribution� k for
every topick, while each column indicates one timestep. The color
in every cell encodes the accumulated probability of all features at the
timestept for the topick, i.e.

P (t; k ) �
X

x

X

w 2F x ( t )

� w;k :

Users can perform topic selection and time span selection in the topic
view. Topic selection is linked to the MDS/Heatmap view and pathline
view, which gives detailed information for the chosen topic. It will also
trigger the attribute view to refresh for the selected topic.

When a topick is selected, the attribute view visualizes the distri-
bution � k for every facetx. Each row corresponds to one feature set
F x , and each column still indicates one timestep. For feature setF x ,
each cell encodes the accumulated probability alone for this topic, i.e.

Pk (x; t ) �
X

w 2F x ( t )

� w;k :

By decomposing the� k from a whole feature vocabulary into several
feature sets, users are able to observe what kind of similar behaviors
aggregate more in this topic, and when this happens.

Since our features are de�ned based on discretization of value
range, there is a demand to investigate the change of the features'
corresponding values in one topic. We further create a pop-up time
histogram to visualize the change of values when a topick and a fea-
ture setF x is selected. Every column is a histogram at corresponding
timestept which comes directly from the probability of features de-
�ned in Equation 1.

With the three parts in the feature view,� ( � ; � ) is visualized at differ-
ent aggregation levels, which provides fruitful explanation for topics.
It is helpful for understanding the data on the topic-word level, and
in the temporal context. On the one hand, the topic view provides
a good access for users to observe and compare the feature (word)
distributions of topics, which could gives insight into how the topic
coherency varies across time. On the other hand, it reveals the multi-
variate time-varying features of topics, indicatingwhen and in which
facetspathlines (documents) resemble each other.

4.2 FLDA Parameter Setting

In the typical LDA model, a set of parameters can be adjusted to tune
the results, including number of topicsK , Dirichlete prior on the per-
document topic distributions� , Dirichlete prior on the per-topic word
distribution� , and number of iterations. In our FLDA model, prede-
�ned feature vocabulary is also provided as parameters.

The topic numberK is dif�cult to decide since it greatly depends
on the actual data. Too few topics will miss some important patterns,
while too many topics may produce redundant, meaningless or triv-
ial results. The Dirichlet prior� and� in�uence the topic distribution
per document and the word distribution per topic respectively. Smaller



(a) #topics = 10, • = 5.0, ! = 0.1 (c) #topics = 15, •  = 5.0, !  = 0.1(b) #topics = 5, •  = 5.0, !  = 0.1

(d) #topics = 10, •  = 1.0, !  = 0.1 (f ) #topics = 10, •  = 5.0, !  = 0.01(e) #topics = 10, •  = 10.0, !  = 0.1
Fig. 6. Visualization of FLDA results of different parameter combinations under a �xed vocabulary of attribute feature s. # topics= 10 ; � = 5 :0; � =
0:1 is chosen as default combination of values. From the results, the number of topics shows great in�uence over the results, while � and � show
small sensitivity.

values make the distribution more concentrated, and vice versa. How-
ever, as the� and � values change in our work, we do not observe
signi�cant changes in the results. The number of iterations also affects
the quality of results, but we found that the output converges quickly
within a hundred iterations. In our case study, we �x this value to 100,
which is a balance between time ef�ciency and the quality of results.

In our experiments, we �rst investigate the FLDA output under dif-
ferent de�nitions of features. In Figure 5, we show the topic view
and MDS/Heatmap view of the results side by side. We can obeserve
some topics have signi�canly uneven temporal distribution of features
in con�guration (a) and (b) from topic view, while in con�guration (c),
the temporal distribution for topics are more even. By careful compar-
ison, we are able to �nd lot of differences between topics from the
previews.

We then tested combinations of other parameters under a �xed fea-
ture vocabulary which contains only the 5 scalar attributes of Isabel

data. We use# topics= 10 ; � = 5 :0, and� = 0 :1 as the default set-
ting. From the results shown in Figure 6, we can see that as the number
of topics increases, the temporal distribution of features has signi�-
cant changes. For some topics, the accumulated distribution of their
features becomes more concentrated on a small time range instead of
being evenly spread over the whole time span. From the Heatmap with
previews, we are able to observe that the topics are merging and split-
ting asK increases. However, for Dirichlet prior�; � , our test shows
that these two parameters have relatively small sensitivity in our FLDA
model.

5 CASE STUDY

As case studies, we tested our FLDA method on the Double Gyre Data
and the Hurricane Isabel data. In this section, we present the corre-
sponding results, and discuss the effectiveness of our system.

(b)

(c)(a)

½
vx (x, y) = ¡ ¼sin(¼x) cos(¼y)
vy (x, y) = ¼cos(¼x) sin(¼y)
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Fig. 7. Visualization results for Double Gyre dataset (a). We extract 3 topics from Double Gyre dataset with feature sets of turning angles (b)
and spatial positions (c) respectively. For turning angles features, we use histograms of 256 bins to discretize angle values. For spatial positions
features, we parition the space domain into 8 � 4 blocks.



5.1 Double Gyre Data

We use a simple dataset, Double Gyre, to demonstrate the basic usage
of FLDA. The vector �eld is given by

�
vx (x; y ) = � � sin(�x ) cos(�y )
vy (x; y ) = � cos(�x ) sin( �y )

over the region[0; 2] � [0; 1]. The �ow �eld is composited by two
symmetric vortices which are shown in Figure 7(a). We choose this
data set in order to give an intuitive understanding of the relationship
between the extracted topics and observed �ow properties. Although
this data is time-independent, there is no barrier to apply our method
to streamlines.

We construct feature vocabulary from facets of turning angle and
spatial blocks respectively. Three topics are extracted with� set to
0.01, � set to 0.001, and the number of iterations being 1000. Re-
sults are shown in Figure 7(b)(c). When we choose turning angles as
words, the streamlines are clustered by their distances to the center
of the corresponding vortex, to which the turning angle behaviors of
streamlines is strongly related. These extracted topics �t our observa-
tion. For feature sets of spatial blocks, we partition the domain into
8 � 4 grids. From the results, we can observe there are mainly two
topics of streamlines, which are basically constructed from the left
and right vortex, and another topic which is nearly duplicated in this
setting.

In this case, the relationship between topics and feature vocabular-
ies is easily obtained, since we only involve one facet in the feature
vocabulary and do not consider attribute information. When it comes
to complicated scenarios, more explorations are required to get the in-
sight into topics.

5.2 Isabel Data

Hurricane Isabel data comes from an atmospheric simulation. The
spatial resolution of this data set is500 � 500 � 100, covering a
physical space of2; 139km � 2; 004km � 19:8 km. The data has 48
timesteps corresponding to 48 hours. As for attributes, we consider the
wind speed vector �led (U, V, and W), and �ve scalar �elds, including
wind speed magnitude (Sp), pressure (Pr), temperature (Tc), the water
vapour mixing ratio (Qv), and total cloud moisture mixing ratio (Qc),
which are suggested by domain experts as important attributes for the
hurricane analysis. In the preprocessing step, we extracted 5,768 path-
lines which are traced from time 0 with 4 samples per hour.

For this data, we only consider facets of the 5 scalar attributes men-
tioned above. We use the FLDA model to extract 15 topics from path-
lines with � set to 5.0,� set to 0.1, and the iteration count to100.
An overview of all topics is presented in Figure 8(a)(b), including the
MDS/heatmap view and the feature view. Among the 15 extracted
topics, there are three topics, the9th; 12th, and14th, which show some
interesting spatial behaviors as displayed in Figure 8(c)-(e). Topic (c)
contains pathlines advecting from the hurricane eye to the outside in
the low altitude region, while topic (d) contains pathlines that travel
from outside to inside in an anti-clockwise direction with a higher al-
titude. Pathlines in topic (e) are advecting at the periphery of the hur-
ricane, which also inhabits in the low altitude region. Figure 8(f)-(h)
shows the attribute view, and the time histogram of pressure (Pr) and
temperature (Tc) for each topic. Besides the geometric patterns, they
can also be treated as clusters from multivariate facet. We can observe
that pathlines in topic (c) have more similar multivariate behaviors in
the �rst half of the advection, while the similar phenomenon appear
in the last half of advection for topic (d). For pathlines in topic (e),
the similarity of attributes is roughly stable through all the advection
time. From the time histogram, explicit attribute changes of the topics
could be more clearly observed. Pathlines in topic (c) and (e) have
an increasing pressure and decreasing temperature in the advection
process, which indicates lower pressure and higher temperature in the
hurricane eye than the periphery. For pathlines in topic (d), the tem-
perature generally goes up when they move towards the center, but the
pressure always keep stable. It could be explained by their advection,
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Fig. 8. We extract 15 topics from Hurricane Isabel data by considering
the feature sets of wind speed magnitude (Sp), pressure (Pr), temper-
ature (Tc), the water vapour mixing ratio (Qv), and total cloud moisture
mixing ratio (Qc). The overview of topics are visualized in (a) heatmap
view and (b) topic view. The 9th, 12th, and 14th topic are selected for
further investigation. These three topics have very different spatial be-
haviors as shown in (c)-(e). The attribute view of each topic and time
histogram of Pr and Tc are shown in (f)-(h).



since the sample points in the hurricane eye have more similar proper-
ties, while those outside the hurricane have more diverging behaviors.

6 DISCUSSIONS

In this part, we compare our FLDA model to other methods from two
aspects: �ow exploration and pathline clustering.

6.1 Comparison to Flow Analysis Methods

The FLDA model brings a novel perspective to explore �ow �led
data. Previous �ow exploration methods include texture-based and
geometry-based methods, parallel coordinates, projection methods,
interactive graph exploration, etc. Compared to these methods, our
method have two major differences. 1) FLDA model not only clusters
pathlines using the fuzzy assignment, but also produces meaningful
multi-facet topics by incorporating simple features. These topics re-
veal complex inherent �ow behaviors, which may be dif�cult to dis-
cover without prior knowledge for detection and extraction. 2) It's
easy for our approach to fuse features from various facets of the �ow
�eld data by treating every pathline as bags of features. Moreover, the
feature components could be totally heterogeneous from very differ-
ent �elds, which enables users to explore the data in a more �exible
way. While these complex �ow behaviors are often dif�cult to de�ne
without priori knowledge.

6.2 Comparison to Cluster Algorithms

We also conducted a comparison between K-Means clustering algo-
rithm and our �ow LDA model on the Isabel data. The K-Means
algorithm calculates the distance matrix of pathlines using the accu-
mulation of sample-wise distances in the attribute space, which is the
same with LASP [17]. Since only the distance matrix instead of the
original high-dimensional data is available, we actually use a variation
of K-Means, named K-Medoids. Our method also uses all 5 attributes
to de�ne the feature vocabulary. The cluster (topic) number is set to
5 for a simpler and intuitive comparison. The clustering results are
compared side by side in Figure 9. We can observe fairly close results
except the2nd cluster (topic). These clusters have very similar spatial
behaviors and distributions in the projection space, which could prove
the effectiveness of our method as a clustering algorithm. However,
the FLDA model excels the K-Means in that it provides a fuzzy, rather
than binary description on the cluster distributions. In this way, it's
also less sensitive to the value ofK , since no samples are exclusive in
the clustering process. For the2nd cluster (topic), because of determin-
istic assignment of K-Means, pathlines in this cluster are isolated from
other parts. While in FLDA model, the probabilistic assignment not
only relieves this problem, but reveals additional compensatory infor-
mation by providing another interesting topic. Besides the projected
results, users are also able to perceive when and in which attributes are
the pathlines more similar or more diverged in the attribute space from
the feature distribution view.

Apart from a better effect, there is a better time complexity of FLDA
model when a small number of feature sets is chosen to construct vo-
cabularyVf . In K-Means algorithm, the pre-computation of distance
matrix costsO(D 2T) and one iteration costsO(D 2), while one iter-
ation in LDA model costsO(KDM ). M denotes the average size
of features in pathlines, which equalsT times the number of features
chosen in our de�nition. In a common scenario, the number of fea-
tures in vocabulary and the number of topics is often a small number
compared toD , which makes FLDA model generally faster than the
K-Means algorithm.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel LDA-based �ow analysis method,
Flow LDA(FLDA). We extend the traditional LDA model to �ow �eld
scenario with a quite different de�nition of words. A prototype system
is developed to extract �ow features, as well as to explain the seman-
tics of topics. Our case studies demonstrate the effectiveness of the
FLDA model.

In the future, we would like to develop our work in different ways.
In our experiments, the parameters in FLDA models show different

(a) (b)
Fig. 9. Cluster results comparison between K-Means algorithm (a) and
FLDA model (b). The number of clusters (topics), K , is set to 5.

sensitivity behaviors from the topic model. The effects of parameters
to LDA results can be studied thoroughly to provide an exploration
guidance. The FLDA can also be further introduced into ensemble
scenario to give a comparative analysis and visualization to ensemble
simulation data.
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