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Fig. 1. The user interface of our proposed FLDA system, including: (a) parameter setting panel for adjusting parameters in LDA
model; (b) MDS/Heatmap view with thumbnails of pathline previews embedded; (c) pathline view for rendering pathlines in 3D space;
(d) feature view. Projection in (b) is rendered as a density map in pseudo color, with distribution of the selected topic highlighted. (d)
in the pixel-oriented style consists of two parts: the attribute-time view at the top and the topic-time view at the bottom. Each column
represents one time step, while each row denotes a topic or an attribute.

Abstract —In this paper, we present a novel feature extraction approach called FLDA for unsteady ow elds based on Latent Dirichl et
allocation (LDA) model. Analogous to topic modeling in text analysis, in our approach, pathlines and features in a given ow eld are
de ned as documents and words respectively. Flow topics are then extracted based on Latent Dirichlet allocation. Different from other
feature extraction methods, our approach clusters pathlines with probabilistic assignment , and aggregates features to meaningful
topics at the same time. We build a prototype system to support exploration of unsteady ow eld with our proposed LDA-bas ed
method. Interactive techniques are also developed to explore the extracted topics and to gain insight from the data. We conduct case
studies to demonstrate the effectiveness of our proposed approach.

Index Terms —Flow visualization, Topic model, Latent Dirichlet allocation (LDA)
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1 INTRODUCTION

In recent years, there is an increasing demand on effective visuali2& Climate research,_ ocean research_, air _pollqtion research, ete. Visu
tion of multivariate unsteady ow eld data, especially in areas suchlization and analysis for such data is quite dif cult and challenging,
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due to the complexity of the data and visualization tasks. In general,
such ow visualization involves exploring attribute space, geometry
space and advection simultaneously.

Flow eld data has been long studied in visualization community
for years. Traditional ow visualizations including texture-based [30]
and geometry-based [36] methods seldom consider the associated at-
tribute information. They may also suffer from visual clutter problem
when dealing with 3D ow eld.

Now more visualization methods are developed to detect, identify
and extract interesting features from the ow eld. One genre is to
manually de ne features at rst, after which the system will try to de-
tect corresponding features from ow eld [28, 46, 39, 8]. Salzbnun
et al. [39] has shown that any suitable set of pathline predicates can be
interpreted as features in unsteady ow structures. However, insight-
ful features are hard to de ne when scientists do not have enough prio
knowledge about the data, especially when multivariate information
involved. Another genre takes clusters as features. The ow eld data
is rst transformed to a space easier for exploration, then automatic
algorithm or manual exploration is conducted to identify and extract



clusters. Projection methods are more effective in revealing the intrid-L  Multivariate Flow Field Visualization

sic features of ow eld data by mapping data to lower dimensionsyjiivariate ow eld visualization is a challenging task due to the
Daniels et al. [22] proposed to project samples of 2D ow into 2Qu,mjexity of the data. Using linked multi-dimensional visualizations

space o extract important spatial structures. Streamlines can alsqf}geatyre extraction and rendering is a major methodology to tackle
projected according to their geometry distances [38]. When it comgs problem.

to multivariate unsteady ow eld, Lagrangian-based Attribute Space g6 of the most popular multi-dimensional data visualization tools

Projection (LASP) proposed by Guo etal. [17]is capable of projecting paraiel Coordinate Plot (PCP) [23]. PCP-based ow eld visualiza-

massive pathlines based on their distances in the attribute space. HQ¥;s had been proposed in recent years [2, 4, 47]. Akiba et al] [1, 2

ever, these methods often suffer from the gap between the data SRAgR 5sed a tri-space visualization combining time histogram, PCP and

R tH spatial rendering for identifying features in temporal, attribute and
help understand these intrinsic structures. spatial domain. Similarly, Blass et al. [4] used PCP for multivariate
In this paper, we propose a novel unsteady ow analysis metheghalysis in a time-varying background, where features are spatially
based on Latent Dirichlet allocation (LDA) model, named Eiew  rendered as isosurfaces. For multivariate particle data, Jones2#lal. [
LDA, or FLDA in short. LDA model is widely used in text analysis todeployed PCP to select particles for pathline generation.
study topics from a large corpus of documents which are naturally de-Scatterplots coupled with dimension reduction techniques or de-
composed into words. In FLDA, we de rgathlinesas documents and rived statistic information are also widely used. Chen et al. [11] pro-
featuresas words respectively. After estimating the underlying modebosed a method to embed DTI bers into 2D Multi-Dimensional Scal-
we obtain a list of topics which are fused from features de ned, anglg (MDS) based on their mutual mean distances, so as to alleviate the
simultaneously pathlines are clustered into topics with probabilistigutter problems in 3D space. Guo et al. [18] proposed a seamless in-
assignment. Theopicscan serve as connectors between the collectiqBgration between PCP and MDS plots, which provides high ef cient
of pathlines and the features. feature extraction by avoiding context switching. Such approach is
FLDA can be regarded as a mixture of the two types of feature efurther developed by Zhao et al. [47], combining Locally Linear Em-
traction methods mentioned before. On the one hand, features arelgding (LLE) with PCP for an easier edit on transfer functions. Hel-
ned at rst to describe expected facets of the ow behaviors. FLDAMut proposed the SimVis system [15] that makes use of scatterplots
model will identify features containing those facets, but in a way ofith linked brushes to select interesting features in particle simula-
fused topics, rather than as separated features. On the other h&inds. Jalicke et al. [25] transformed the attribute space into 2D point
FLDA can be treated as a probabilistic clustering method. We are alolouds where special features could be distinguished without clutter or
to obtain semantic implications of clusters from LDA-derived topicgbscurity. More recently, Maciejewski et al. [35] encoded attribute re-
which re ect intrinsic patterns hidden in the ow eld data. More- lationships instead of projections in the scatterplot for better guidance
over, the probabilistic assignment gives a consecutive measureimerin 2D transfer function design. For vector eld of ow data, dimension
the pathline-topic relationship, which could provide more insights intorojection techniques give more insight by embedding eld lines into
clusters. lower dimension spaces. For streamline embedding, Hausdorff dis-
Although LDA model has been successfully applied to many ré@nces are used as the distance metric [38] between seed points so that
search elds besides text analysis, including computer graphics, cofi€ Projection plot reveals spatial similarity of corresponding stream-
puter vision [42, 9, 31] and even recently traf c trajectory analylines. To further consider multivariate behavior of unsteady ow eld,
sis [12], it has not been systematically tested for ow eld visualiza-ASP [17] extended the geometry space distance to attribute space
tion. It is nontrivial to apply LDA model to ow eld data. The key distance for traced pathlines. That method is capable of extracting
problem is how to de ne features in FLDA, which is corresponding ténultivariate features in the Langragian perspective for unsteady ow
words in LDA model, and how to explain topics and their relationshi?ata- Facing a similar data complexity problem, we adopt the MDS
with pathlines and features. In the original LDA model for text anak® exhibit the relationship of pathlines in the attribute space, which
ysis, words are naturally obtained from documents. When appliedRfPvides a carrier to visualize ow topics from the multivariate facet.
computer vision or computer graphics for segmentation, classi catidrPr @ better performance, we use the Pivot MDS [6] to reduce the
or pattern recognition, spatial regions are usually used as words. H&RMPutational complexity.
ever, in ow eld analysis, it is not suf cient to consider only spatial _Besides PCP and scatterplot, other approaches are also used to
positions. Especially for multivariate unsteady ow eld, we expechow the relationships among variables. Sauber et al. [40] proposed
to involve multivariate features. Therefore, we need to carefully d8lulti €ld-graphs, in which variables are hierarchically grouped for a
ne wordsin our FLDA model, in order to obtain a good descriptiord€scendant correlation display in the spatial domain. Woodring and
of the expected facets. We have tackled the feature de nition proBhen [44] used a spreadsheet and a tree map for showing the compar
lem and apply the FLDA model for complexity ow visualization, asSO"n relationship between attributes. Concerning data clustering in the
a new approach to understand and explore complex ow elds. Waltribute space, Linsen et al. [33] also used the tree structure to present
also developed a set of interactive techniques for better understandiify hierarchical structure, aligned with cluster contours shown in the
the extracted topicsand their relationship with features and pathlineS{ar coordinate context. From the information-theoretic aspect, Wang
The remainder of i paper s organized as follows. We descrfk %1411 00ptedcrculrgraph ayeut toprsert rformatn rans.
the background of FLDA model and ow eld visualization and anal- tween samples extracted from the volume using scatterplot matrix.
ysis techniques in Section 2. In Section 3, we introduce our meth

on the basis of LDA model, and describe the pipeline of our prototy urcklnerhatgd ?gggat[g]zr:’gtutlg\?asrggggz rc‘iaaé? ér;tghclﬁ;zf‘ with a
system. We give more details about the parameter settings of FLBR' 9YP P )
model, and visualization techniques in Section 4. Case studies 818  Tgpjic Model and LDA Analysis
shown in Section 5 to demonstrate the effectiveness of our method. . o . .
In Section 6, we compare the proposed FLDA method with other ap@Pic model is widely used in text analysis. Landauer et al. [29] pro-
proaches. At last, we conclude this paper with a brief review and dig2S€d the concept of Latent Semantic Analysis in 1988. Latent Seman-
tic Analysis add a latent semantic layer between documents and words.
cuss about the future work. X . s
Latent semantics are extracted from the relationship among words to
construct semantic space, where documents are then projected to ob-
2 BACKGROUND tain a sparse representation. pLSI/pLSA [19, 20] introduced statistic
analysis and generative model based an LSA. pLSA solves synonyms
Our work has mainly three relevant elds: multivariate ow eld vi- and polysemy problem, but suffers from over tting. Blei et al. [Sppr
sualization, LDA analysis methods, and ow exploration methods. Iposed the concept of topic model and related LDA model. LDA is a
this section, we brie y review literature in these elds. multi-layer Beyasian model, including three layers, e.g. words, top-



ics, and documents. Every topic is a mixture of words, while everglationships between streamlines and blocks with rich interaction and
document is a mixture of topics. By introducing Dirichlet distributionguery techniques. ahicke et al. [26] extract local ow patterns as
LDA model is able to avoid over tting which pLSA suffers. Among nodes in graph, and their transitions as edges where users can track
these two most popular topic models, pLSA is actually a special cagatures over time. There are some work representing the attribute
of LDA. After LDA model, lots of variations raise. relationship of scalar eld using graph-like form [40, 3].

In text analysis, lots of visualization are proposed for the results In our work, based on a novel perspective, FLDA, we pro-
derived by LDA model. Termite [13] utilized a 2D table to representide a pixel-wised feature view, together with preview-facilitated
the distribution between keywords and topics, using size of circles MDS/Heatmap view to help explore ow eld data.
indicate the probabilities. Documents can be projected to lower dimen-
sional space by considering not only the distances between words, But OVERVIEW
also the distances between latent semantic topics [21, 24]. To visualiaehis work, we innovate a ow eld analysis method which is based
the evolution of topics along time, TIARA [43] encoded the hotness @ih LDA model, and implement a prototype system to support LDA-
topics using the width of rivers in ThemeRiver. TextFlow [14] furthebased exploration on ow eld. In this section, we will rst introduce
used the metaphor of rivers to indicate the emerging, vanishing, mekgsics of LDA model and its usage in the topic analysis eld. Then
ing and splitting events in topic models. LeadLine is also a river-likwe give our equivalent de nition of LDA concepts in the ow eld
visualization, but more emphasized on the bursting to topics hotnessenario. At last, we describe the pipeline of our prototype system.
iVisClustering [32] not only provides various visualization techniques )
for LDA model, but also enables users steering of LDA process. B8-1 Basics of LDA Model
sides applications in text analysis eld, LDA model has been adoptedtent Dirichlet allocation (LDA) was rst proposed by Blei et al. [5]
in computer graphics and computer vision eld [42, 9, 31] for variougo explain why documents are similar from the latent topic level in-
purposes, such as segmentation, classi cation, pattern recognition, etead of the word level. We rst introduce some basics of typical LDA
In visualization of traf ¢ data, Chu et al. [12] use LDA model to dis-model. The symbols used in this paper are listed in Table 1.
cover hidden themes from trajectories data.

In this paper, we build a topic model for ow eld data to describe D Number of documents.
the relationship between pathlines and features by introducing a latent K Number of topics.
layer. Our prototype system provides several visualizations for LDA V | Vocabulary.
results. We focus more on revealing the insight of topics, since topics di | Thej™ document.
in our method have richer meaning. N; | Number of words ird; .

N Eotal number of words in all documents,
. D
Typical =1 Nj.
DOC1: money bank loan ban 1.0 S LDA Wij Thei‘h word ind; document.
ey money bk oan WT) Do 1> Topic 1 Banking | Zi;l Topic assignmerjlt for wordl; .
DOC2: money bank bank rive Soan meney i | Probability of topics in document .

load stream bank monev {‘ k | Probability of words in topic.
DOCS3: river bank stream baan l S’_’@an«;\*gvbank |][||:> Topic 2: River Dirichlet prior for .
1.0 Tvey?, streain .

river river stream bank Dirichlet pl’iOI’ for

(@ N Facet of ow eld,
P Flow x 2 f SpeedAttribute; Angle; . . .Q.
inel: ) : — > / ' !
‘ Egh#g;t}frz Te2 PriTc2 P2 10 T2 ez g IZ> Flow LDA Fx | Flow feature set de ned ondacat
S| Pt ., P12 Topic 1 Vi | Vocabulary of ow features, , Fy.
| Pahine2: Pr2 Te2 Tel Te3 Pr. _ = Table 1. Symbols used in this paper.
— S W q
‘ Pathline3: Tc3 Tel Pr3 Tel Te3 IJEIE> s 2 To,fifz The LDA model is typically used to analyze topics in the corpus of
Te3 Pr3 Tel , documents. The underlying generative process is that any document

b d; is modeled as a mixture &f topics, while any topik is character-
Fig. 2. lllustration of (a) typical LDA model and (b) our ow L DA model. |zec_i by a mU|t'n0m'al distribution i over vocat_)ularw. Among all
Pathlines and features are de ned to be equivalent to docume nts and ~ Variables, onlyw; is observable, while others likg , j, and « are
words in topic model respectively. Tc and Pr stands for features of tem-  latent variables. LDA model generates observations of latent variables
perature and pressure respectively. using the following process:
1. For every documend;, draw a topic distribution; from a
. ) Dirichlet prior with parameter , i.e. Dir ( ), where
2.3 Exploration on Flow Field Data j2f1 :Dg
Traditional ow visualization methods, such as texture-based [30] and2. For every topidk, draw a word distribution x from a Dirich-
geometry-based [36] methods, usually involvelittle user interaction. let prior with parameter , i.e. Dir (), wherek 2
More recently, interactive feature extraction techniques have been de- f1; K g.

veloped to help users explore ow eld. Parallel coordinates are often 3 £ \word positiori in j " document, wheré 2 f 1: ‘Nig
used to visualize the scalar eld in ow data, where users are able andj 2 f1; :Dg, choose a top;ic for this po’sitioil- 'z

to brush numerical ranges to extract features [1, 2, 4]. Alternative to | "1 itinomial ( ,') and then choose a word from éhe cho-
parallel coordinates, projection approaches are able to reveal itheren oo, topiow; MultiJno’miaI (2 ).

structures from data. 2D scalar samples are projected into 2D space ' !
to extract important spatial structures. Streamlines and pathlines ¢&sr the generative process is de ned, the total probability of the
also be embeded into lower-dimensional space advection informatigR el can be described as:

based on the distances in geometry space [38] and attribute space [17].

Users are able to extract rich features from projection plots.

e T . PW.Z,; ;)=
Recently, graph-based visualization is emerging for ow explo-
ration. TransGraph [16] is proposed to visualize information transi- ¥ ¥ . )
tion along time between blocks, where users can select different levels PCii ) PCiv ) Pl )PWir] z, )s

of hierarchy. Ma et al. [34] proposed FlowGraph to explore the dual i=1 =1 t=1



whereW,; Z; ; dontes the vector version of; ;zj ; j,and  re- than over consecutive timesteps or the entire time span. In this way,

spectively. The model estimation process is to maximize the likelihodtds easier to decompose a topic along the time dimension to inspect

function by Bayesian inference with parameterand . The original the evolution of corresponding behaviors. On the other hand, topics

model [5] uses variational inference method, while in our work, wean be treated as fuzzy clusters constructed by pathlines based on the

adopt an implementation using Gibbs sampling [37]. The time corbehaviors they shared. Pathlines convey rich multivariate information,

plexity of one iteration iSO(KDM ), whereM is the average length geometric information and temporal information, which makes it pos-

of documents. It can be simpli ed t@(KN ), whereN donates the sible to extract topics from some facets and then explain them from

total number of words in all documents. the others. While in text analysis, the documents only contain textual
The LDA model can be applied as a document clustering methadformation, thus the topics can only be extracted and explained from

TheK topics can be treated as clusters, and the topic distribufion the same aspect. From this point of view, topics in ow eld are more

for the document); denotes the probabilities of membership to evergxplainable than those in text analysis.

cluster. A more careful approach is to treatas a lower-dimensional .

feature vector for every document, and conduct another clustering r3-3 Features De nition

tine, such as k-means. However, in FLDA model, we choose the fdarhe input of LDA model is the bags of features, which is analogue to

mer approach, because we think the topics and distributions acttlas the bags of words in topic model. In topic model, documents can be

better connectors between the data space and feature space. naturally decomposed into words. The order of words in one document

does not in uence the results. However, a simple copy of the de nition

3.2 FLDA Model doesn't work in the ow eld scenario. First of all, dividing pathlines

To employ LDA model in ow eld analysis, we need to de ne equiv- based on spatial location doesn't make much sense, since they rarely

alent LDA concepts at the very beginning (Figure 2). Without losshare the same sample points. Such a trivial de nition will lead to

of generality, we give our de nition on pathline data, which could beneaningless results. More importantly, the advection information of

easily extended to other kinds of eldlines. In our FLDA model, wepathlines will be lost if we do not involve the order of sample points

considemathlinesas the central subjects, which play a similar role amto the FLDA model.

documents do in the topic model. We then consfdaturesas words, In our approach, we de ne various kinds of features as words to

with pathlines beindags of featurgswhich is analogous to the con- describe ow behaviors from different facets. The prede nediiea

cept of documents beingags of wordsn topic model. For any facet sets for every sample point on a pathline are listed below. All these

x of the ow eld, such as geometric, multivariate or temporal facetfeature sets are assembled to a huge vocabWary

we can de ne a feature sétx to describe different behaviors of the Speed magnitudd=(speeJ.

selected facet. For example, we can de ne features as blocks in spatial - Attribute value F au).

domain to represent similar spatial behaviors, or as bins of the attribute  Tyrning angle E angie)-

value to represent similar attribute behaviors, etc. In this way, any Spatial positions siock)-

pathlines sharing similar behaviors are co_nsidered to have COMMOR)/5rds in topic models are always discrete, while features we de-

features. All feature setSx can then be united to an overall feature .4 in ELDA are usually from continuous numerical ranges (or

vocabularyVs . In our prototype system, we provide a prede ned vog,,.64) - e divide the whole range or space into several bins or re-

cabulary containing feature sets of commonly concerned facetss Usgl 1< aach of which corresponds to one feature. At the same time
are free to choose a subset of prede ned vocabulary or add their o e add temporal information to distinguish between similar behaviors

de nitions to the existing vocabulary. but appeared at different moments. Even similar bins or regions in one

After de ning the feature vocabulary; , we pick out features for ot ¢ at different timesteps correspond different featureisht
every pathline to make ifeature bag The FLDA method uses the fea- ; ajor gifference from the word de nition in topic model. In this

ture bags as input to estimate the underlying topic model. As resuli, “yonics generated could be decomposed along time dimension to
topics, distribution of topics per pathline, and distribution of featur ve more useful explanation for unsteady ow eld. There is a possi-

per topic are generateq. Similar to the LDA mode_l, the derived to flity that feaures are de ned as behaviors across several cansecu
can be treated as a mixture of features. Meanwhile, pathlines are @yegteps. However, this type of features de nitions will depend on
signed to topics with probabilities. uaers' priori knowledge on data.

The generated topics are depicted from two aspects, the feature sidg, e the facet of speed magnitude for example, we can generate a
and the pathline side. On the one hand, in order to provide good $&sy e set as follows: At timestépthe speed magnitude of all sample
mantic explanations for topics, it is important to choose approprigignes falis into an intervaa,; b . We can draw a nite sequence on
de nitions of features. Easy as it seems in static data, the probl ML interval
is tricky in the time-varying background. In our prototype system, we

prefer to de ne features as similar behaviors at a single timestep, rather A = Xeo<Xp1<Xg2< <Xtn, = h;

]
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Fig. 3. Pipeline of our system. Pathlines are extracted from ow eld in preprocess step. After users choose the feature s ets, every pathline is
treated as a bag of features, which serves as the input of the LDA model. Topics, topic distributions per pathline, and feature distributions per topic
are generated by LDA model. Multiple interactive views are created to visualize the results.



which partitions the numerical range ime equal-range subintervals. 4 SYSTEM DETAILS

Then we de ne a speed magnitude featsge corresponding to each \ye implement a prototype system which employs FLDA for multivari-
subinterval, and collect all features at timestepe. ate ow eld analysis. We rst introduce our system interface, where

) : . . users can explore the results of FLDA from various aspects. We then
Sti [Xui Xt v [;where0 i<n; 1) give details on experiment under different parameter settings.

St = fsgo,  iStn, 10

4.1 User Interface

The interface includes four parts: parameter setting panel, pathline
view, preview with MDS/Heatmap and feature view as shown in Fig-
1 ure 1.

Fspeeda S = Si;where0 t<T:
t=0

By collecting all speed magnitude featur@sat every timestep, we
obtain a feature set for speed magnitude facet,

4.1.1 Parameter Setting Panel
In the parameters setting panel (Figure 1(a)), users are able toechoos
We can de ne other feature sets similarly. In this way, a feature velifferent feature sets to compose the feature vocabufanand set
cabulary is obtained based on the union of all prede ned feature seigecessary parameters. Users then launch FLDA analysis. Results gen-
erated are visualized in the three views.
Vi = FSpeed[ F At [ F Angle [ F Block [

We can also decompose the feature sets and the feature vocab
along the time dimension:

4.1.2 Pathline View

%ré/ pathline view (Figure 1(c)) is set to visualize the spatial distribu-
tion of pathlines which have a high degree of membership to a speci c

Vi (t) = Fspeedt) [F awr(t) [F angie(t) [F siock(t) [ : topic. Interactions Iik_e rotating, z_ooming ar_ld panning are provid_ed
to enable an elaborative observation from different viewports. By in-
wheret donates one timestep. specting the spatial shapes of pathlines, users can estimate the behavior

The de nition of feature vocabulary; is exible. Onthe one hand, coherence within a topic, so as to evaluate the rationality of topics.
users could select one or multiple feature sets to construct a new fea- ) )
ture vocabulary to meet their requirements. On the other hand, simfit-3  Preview with MDS/Heatmap
feature de nitions are not useless in our approach. Even with simgie this view, we mainly focus on the topic distribution per document
features, FLDA model could generate meaningful topics by mixing ) generated by FLDA. The MDS/Heatmap view (Figure 1(b)) con-

features to describe complicated ow behaviors. sists of two parts, namely the MDS projection of the original pathlines
o and the spatial previews of topics. This view mainly serves three pur-
3.4 Pipeline poses:

Based on FLDA model, we implement a prototype system to suppor
the visualization and exploration on multivariate ow eld data (Fig- . o . . . .
ure 3). 2. Proylde an intuitive overview of all topics by embedding their
In our preprocessing step, we rst extract pathlines from an un-  SPatial distributions as previews.
steady ow eld, together with multivariate information. Pathlines 3. Reveal the correlation of different topics by comparing the mul-
are generated using adaptive Runge-Kunta method, and the resampled tivariate distributions of their members.
with a xed time interval. At the same time, we employ our previous
work, LASP [17], to project the multivariate pathlines into a 2D space For the rst purpose, we provide a LASP projection plot [17] to
based on their distances in the attribute space along the advectionpigsent the distribution of pathlines. The distance of two pathlines
that instrinsic multivariate structures are revealed. is de ned in the attribute space with Lagrangian speci cation, which
The FLDA model starts from desired feature de nitions chosen b calculated by accumulating the differences of attribute values at all
users from the system presets. All features are generated from theg@gesponding sample positions of pathlines. Two rendering styles are
de nitions according to the previous description. For every pathline,
the system then picks up those features whose corresponding behav-
iors are observed in it. After that, each pathline can be regarded as a @
bag of features, which serves as the input of LDA model. The under-
lying latent topic model is then estimated, where topics, topic distri
butions per pathline, and feature distributions per topic are generated.
In the visualization part, we create tt¥DS/Heatmap vievand
the feature viewmto show the results. The MDS/Heatmap view gives
an overview of the topic distribution in the projection space, together
with thumbnail previews showing the spatial distribution of each topig.
The feature view visualizes temporal distributions of features for ev-
ery topic. Users are able to nd out when and in which facets the Topic Highlighting
pathlines in the same topic resemble each other. Topic selection is
supported in both views. The MDS/Heatmap view can highlight path )
lines who have high degree of memberships in the selected topic. The @
feature view then visualizes the temporal distribution of features for
every facet, where users are able to observe which facets of simjlar Heatmap/MDS Switch
behaviors are dominated in this topic, and when this happens. Apart
from the two views, we render those pathlines with high degree pf
membership in the pathline view.
In the system, users are able to adjust the LDA parameters, includ-
ing feature Vocabulary, thg number of topic number, Dirichlet P,”qfig. 4. Interactions supported in the MDS/Heatmap view. (a) The de-
L the number of Ite_ratlons, etc. Among the_m, feature de NItioR, it MDS projection is rendered as a scatterplot. (b) When a topic is
is signi cantly responsible for the results. Besides the several prgsjected, distribution of the data within this topic is highlighted using fo-
sets provided by the system, users can also extend the vocabulary iy context technique. (c) Users can switch the projection to a heatmap
adding their own de nitions on demand. style where the density information could be more clearly seen.

Y. Reveal the intrinsic multivariate structures of attribute space.
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T
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Fig. 5. Visualization of FLDA results under different feature set de nitions. (a) Feature sets of SPEED and Turning Angl e; (b) Feature set of P only;
(c) Feature set of TC only.

provided: the traditional scatterplot style and the heatmap style (Fig-In the topic view, each row shows the feature distributiqnfor

ure 4(b)). Users are allowed to change the projection style, dependevgry topick, while each column indicates one timestep. The color
on whether individual data samples or density of the distribution i every cell encodes the accumulated probability of all features at the
the major concern. In the heatmap style, users can adjust the cdiorestept for the topick, i.e.

mapping to emphasize areas with different densities, so as to recover X X
details that would be hidden with an improper color scale. P (t;k) wk
For the second purpose, we introduce previews in the projection X W2F (1)

plot to indicate the spatial distributions of topics. Each preview con- ) ) ) o )

tains a small snapshot of the pathline rendering result of the cortésers can perform topic selection and time span selection in the topic

sponding topic. Pathlines in previews are kept the same temporal afv. Topic selection is linked to the MDS/Heatmap view and pathline

spatial range as in pathline view. To avoid clutter in previews, only\d_ew, which giv_es det_ailed information for the chosento_pic. It will also

subset of pathlines are rendered in the preview. The number of the stigger the attribute view to refresh for the selected topic.

set comes from a power function of original number of pathlines in the When a topidk is selected, the attribute view visualizes the distri-

topic. For every topidk, the corresponding preview is anchored at it§ution « for every face. Each row corresponds to one feature set

central sample, which minimizes the distance to all samples weighted, and each column still indicates one timestep. For featurgset

by probability jx . A leader then emits from the anchor position te@ach cell encodes the accumulated probability alone for this topic, i.e.

its corresponding thumbnail. The previews are carefully arranged to

avoid overlaps, occlusions and line crossings, using a heuristic zone- Pi(x; 1) wik -

based labeling algorithm proposed by Wu et al. [45], which combines W2F (1)

genetic and greedy strategies to minimize the overall length of lines. ) )

Users can select a topic by clicking on its preview, which results Y decomposing thex from a whole feature vocabulary into several

highlighting in the pathline view and the projection view. feature sets, users are abl_e to observe w_hat kind of similar behaviors
For the last purpose, topic highlighting is introduced (Figure 4(b)f99regate more in this topic, and when this happens.

In the scatterplot style, we adopt the focus+context strategy and high-Since our features are de ned based on discretization of value

light those samples of high degree membership while fading out off"9e, there is a demand to investigate the change of the features

ers. The probability;, is considered as the degree of membership GOrresponding values in one topic. We further create a pop-up time

document; to topick. When in the heatmap style, we modulate th&iStogram to visualize the change of values when a tepiod a fea-

density by the weights;, for every sample to emphasize distributionfU'® S€F x is selected. Every column is a histogram at corresponding

of the chosen topik (Figure 4(c)). By viewing the distribution of the timestept whl_ch comes directly from the probability of features de-

topic, users can see clearly how its members resemble each othePfif! In Equation1. _ o _

the attribute space. By switching between focuses, users can learn th¥/ith the three parts in the feature view, , is visualized at differ-

differences between topics. ent aggregation levels, which provides fruitful explanation for topics.
Providing spatial previews greatly enhances users' comprehenslB

of the results. Firstly, embedding previews in the projection closel

relates the spatial and multivariate distributions of a topic without t

trouble to switch between contexts. Secondly, by viewing the sna pherency varies across time. On the other hand, it reveals the multi-

shots before they drill down to details, users may gain an intuitive pet- . e i g feat f topics. indicati d in which
ception about the spatial features of topics, which may cast a light iﬂﬂ”a e time-varying features of topics, indicatiwgen and in whic

the following exploration. At last, the small multiple strategy enableé&cetsPathlines (documents) resemble each other.
users to compare different topics without switching between contexiso  F| DA Parameter Setting

helpful for understanding the data on the topic-word level, and
he temporal context. On the one hand, the topic view provides
good access for users to observe and compare the feature (word)
stributions of topics, which could gives insight into how the topic

414 FEeature View In the typical LDA model, a set of parameters can be adjusted to tune
T the results, including number of topiss, Dirichlete prior on the per-
While the MDS/Heatmap view reveals correlations between pathlindecument topic distributions, Dirichlete prior on the per-topic word
and topics (. in the attribute space, the feature view (Figure 1(d)jistribution , and number of iterations. In our FLDA model, prede-
visualizes the relationships between features and topics in an  ned feature vocabulary is also provided as parameters.
time-varying context. The feature view contains three parts: the topic The topic numbeK is dif cult to decide since it greatly depends
view, facet view for one selected topic, and time histogram for oran the actual data. Too few topics will miss some important patterns,
facet of one selected topic, all of which are of pixel-oriented stylevhile too many topics may produce redundant, meaningless or triv-
These three views enable a progressive exploration process for tojmt results. The Dirichlet prior and in uence the topic distribution
feature relationships. per document and the word distribution per topic respectively. Smaller



(a) #topics =10, =5.0! =0.1 (b) #topics =5¢ =5.0) =0.1 (c) #topics = 15, =5.0) =0.1

(d) #topics =10¢ =1.0} =0.1 (e) #topics = 10, =10.0} =0.1 (f) #topics = 10s =5.0} =0.01
Fig. 6. Visualization of FLDA results of different parameter combinations under a xed vocabulary of attribute feature s. # topics=10; =5:0; =
0:1 is chosen as default combination of values. From the results, the number of topics shows great in uence over the results, while and show
small sensitivity.

values make the distribution more concentrated, and vice versa. Halata. We usé topics= 10; =5:0,and = 0:1 as the default set-

ever, as the and values change in our work, we do not observéing. From the results shown in Figure 6, we can see that as the number

signi cant changes in the results. The number of iterations also affedftopics increases, the temporal distribution of features has signi -

the quality of results, but we found that the output converges quickdant changes. For some topics, the accumulated distribution of their

within a hundred iterations. In our case study, we x this value to 10@eatures becomes more concentrated on a small time range instead of

which is a balance between time ef ciency and the quality of resultsbeing evenly spread over the whole time span. From the Heatmap with
In our experiments, we rst investigate the FLDA output under difpreviews, we are able to observe that the topics are merging and split-

ferent de nitions of features. In Figure 5, we show the topic viewing asK increases. However, for Dirichlet prigr , our test shows

and MDS/Heatmap view of the results side by side. We can obesethat these two parameters have relatively small sensitivity in our FLDA

some topics have signi canly uneven temporal distribution of featuregodel.

in con guration (a) and (b) from topic view, while in con guration (c),

the temporal distribution for topics are more even. By careful COMPaE- ~, oc STUDY

ison, we are able to nd lot of differences between topics from the

previews. As case studies, we tested our FLDA method on the Double Gyre Data
We then tested combinations of other parameters under a xed femd the Hurricane Isabel data. In this section, we present the corre-

ture vocabulary which contains only the 5 scalar attributes of Isalb®donding results, and discuss the effectiveness of our system.

1
(b)
0 Ye 1 2
Ve (X,y) = Yasin(¥ax) cos(¥ay)
Vy(X,y) = Yacos(a¥) sin(¥ay)
@) ©

Fig. 7. Visualization results for Double Gyre dataset (a). We extract 3 topics from Double Gyre dataset with feature sets of turning angles (b)
and spatial positions (c) respectively. For turning angles features, we use histograms of 256 bins to discretize angle values. For spatial positions
features, we parition the space domain into 8 4 blocks.



5.1 Double Gyre Data

We use a simple dataset, Double Gyre, to demonstrate the basic usage
of FLDA. The vector eld is given by

Vi (xy) = sin( x)cos(y )
= cos(x )sin(y)

over the regiorf0;2] [0;1]. The ow eld is composited by two
symmetric vortices which are shown in Figure 7(a). We choose this
data set in order to give an intuitive understanding of the relationship
between the extracted topics and observed ow properties. Although
this data is time-independent, there is no barrier to apply our method
to streamlines.

We construct feature vocabulary from facets of turning angle and
spatial blocks respectively. Three topics are extracted wiet to
0.01, setto 0.001, and the number of iterations being 1000. Re-
sults are shown in Figure 7(b)(c). When we choose turning angles as
words, the streamlines are clustered by their distances to the cen*ass
of the corresponding vortex, to which the turning angle behaviors ¢
streamlines is strongly related. These extracted topics t our observi
tion. For feature sets of spatial blocks, we partition the domain int
8 4 grids. From the results, we can observe there are mainly tw
topics of streamlines, which are basically constructed from the lef 2
and right vortex, and another topic which is nearly duplicated in this §
setting. (b)

In this case, the relationship between topics and feature vocabular-
ies is easily obtained, since we only involve one facet in the feature
vocabulary and do not consider attribute information. When it comes
to complicated scenarios, more explorations are required to get the in-
sight into topics.

@

CoNONBWNRO

5.2 Isabel Data

Hurricane Isabel data comes from an atmospheric simulation. The © (d) )
spatial resolution of this data set #0 500 100, covering a  Atibue
physical space d; 139km  2;004km 19:8 km. The data has 48
timesteps corresponding to 48 hours. As for attributes, we consider the
wind speed vector led (U, V, and W), and ve scalar elds, including
wind speed magnitude (Sp), pressure (Pr), temperature (Tc), tke wa
vapour mixing ratio (Qv), and total cloud moisture mixing ratio (Qc),
which are suggested by domain experts as important attributes for tTE
hurricane analysis. In the preprocessing step, we extracted 5,768 pat1-
lines which are traced from time 0 with 4 samples per hour. Atribute )
For this data, we only consider facets of the 5 scalar attributes mef-
tioned above. We use the FLDA model to extract 15 topics from path-
lines with set to 5.0, setto 0.1, and the iteration count t0100.
An overview of all topics is presented in Figure 8(a)(b), including the .
MDS/heatmap view and the feature view. Among the 15 extracted
topics, there are three topics, & 12", and14™, which show some
interesting spatial behaviors as displayed in Figure 8(c)-(e). Topic (gF
contains pathlines advecting from the hurricane eye to the outside ir
the low altitude region, while topic (d) contains pathlines that trave|Atritute C)
from outside to inside in an anti-clockwise direction with a higher al-
titude. Pathlines in topic (e) are advecting at the periphery of the hu
ricane, which also inhabits in the low altitude region. Figure 8(f)-(h)
shows the attribute view, and the time histogram of pressure (Pr) an
temperature (Tc) for each topic. Besides the geometric patterns, they
can also be treated as clusters from multivariate facet. We can obsernve
that pathlines in topic (c) have more similar multivariate behaviors ir|"~
the rst half of the advection, while the similar phenomenon appeal (@)

in the last half of advection for topic (d). For pathlines in topic (€)gig_ g, we extract 15 topics from Hurricane Isabel data by considering
the similarity of attributes is roughly stable through all the advectiofe feature sets of wind speed magnitude (Sp), pressure (Pr), temper-
time. From the time histogram, explicit attribute changes of the topiggyre (Tc), the water vapour mixing ratio (Qv), and total cloud moisture
could be more clearly observed. Pathlines in topic (c) and (e) hawing ratio (Qc). The overview of topics are visualized in (a) heatmap
an increasing pressure and decreasing temperature in the adveaii@n and (b) topic view. The 9", 12t and 14™ topic are selected for
process, which indicates lower pressure and higher temperature infiliéher investigation. These three topics have very different spatial be-
hurricane eye than the periphery. For pathlines in topic (d), the teieviors as shown in (c)-(e). The attribute view of each topic and time
perature generally goes up when they move towards the center, buttiseogram of Pr and Tc are shown in (f)-(h).

pressure always keep stable. It could be explained by their advection,

Pr

(=3




since the sample points in the hurricane eye have more similar proper-
ties, while those outside the hurricane have more diverging behaviors.

6 DISCUSSIONS

In this part, we compare our FLDA model to other methods from two
aspects: ow exploration and pathline clustering.

6.1 Comparison to Flow Analysis Methods

The FLDA model brings a novel perspective to explore ow led
data. Previous ow exploration methods include texture-based and
geometry-based methods, parallel coordinates, projection methods,
interactive graph exploration, etc. Compared to these methods, our
method have two major differences. 1) FLDA model not only clusters
pathlines using the fuzzy assignment, but also produces meaningful
multi-facet topics by incorporating simple features. These topics re-
veal complex inherent ow behaviors, which may be dif cult to dis-
cover without prior knowledge for detection and extraction. 2) It's
easy for our approach to fuse features from various facets of the o
eld data by treating every pathline as bags of features. Moreover, the
feature components could be totally heterogeneous from very differ-
ent elds, which enables users to explore the data in a more exible
way. While these complex ow behaviors are often dif cult to de ne
without priori knowledge.

6.2 Comparison to Cluster Algorithms

We also conducted a comparison between K-Means clustering algo-
rithm and our ow LDA model on the Isabel data. The K-Means
algorithm calculates the distance matrix of pathlines using the accu-
mulation of sample-wise distances in the attribute space, which is the
same with LASP [17]. Since only the distance matrix instead of the
original high-dimensional data is available, we actually use a variation
of K-Means, named K-Medoids. Our method also uses all 5 attributes
to de ne the feature vocabulary. The cluster (topic) number is set to

(@) (b)

5 for a simpler and intuitive comparison. The clustering results afég. 9. Cluster results comparison between K-Means algorithm (a) and
compared side by side in Figure 9. We can observe fairly close resifitdA model (b). The number of clusters (topics), K , is set to 5.

except the2" cluster (topic). These clusters have very similar spatial
behaviors and distributions in the projection space, which could prove

the effectiveness of our method as a clustering algorithm. Howevegnsitivity behaviors from the topic model. The effects of parameters
the FLDA model excels the K-Means in that it provides a fuzzy, rathes DA results can be studied thoroughly to provide an exploration

than binary description on the cluster distributions. In this way, itguidance. The FLDA can also be further introduced into ensemble
also less sensitive to the valuekof, since no samples are exclusive inscenario to give a comparative analysis and visualization to ensemble

the clustering process. For tB¥ cluster (topic), because of determin-simulation data.

istic assignment of K-Means, pathlines in this cluster are isolated from
other parts. While in FLDA model, the probabilistic assignment not

only relieves this problem, but reveals additional compensatory infokCKNOWLEDGMENTS

mation by providing another interesting topic. Besides the projected

results, users are also able to perceive when and in which attributesRFFERENCES

the pathlines more similar or more diverged in the attribute space fronﬁ]
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