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ABSTRACT

We propose a longest common subsequence (LCSS)-based ap-
proach to compute the distance among vector �eld ensembles. By
measuring how many common blocks the ensemble pathlines pass
through, the LCSS distance de�nes the similarity among vector
�eld ensembles by counting the number of shared domain data
blocks. Compared with traditional methods (e.g., pointwise Eu-
clidean distance or dynamic time warping distance), the proposed
approach is robust to outliers, missing data, and the sampling rate
of the pathline timesteps. Taking advantage of smaller and reusable
intermediate output, visualization based on the proposed LCSS ap-
proach reveals temporal trends in the data at low storage cost and
avoids tracing pathlines repeatedly. We evaluate our method on
both synthetic data and simulation data, demonstrating the robust-
ness of the proposed approach.

1 INTRODUCTION

A simulation ensemble is a set of simulations generated from mod-
els with different initial values and boundary conditions. Ensemble
pathlines are a set of pathlines traced in the vector �elds of dif-
ferent simulation members. Domain scientists are interested in
the regions of vector �eld ensembles with high variation or high
similarity across different ensemble runs. The accuracy of the sim-
ilarity values depends on the distance between ensemble pathlines.
If de�ned properly, the distance metric can provide meaningful and
expressive comparative visualization results and help scientists dis-
cover and highlight the characteristics of the simulation models un-
der different parameter conditions.

Existing similarity measurements to reveal variation presented
in ensemble vector �elds fall into two types. The �rst is pointwise
Euclidean distance [7, 22] (we abbreviate it to pointwise distance
in this paper). The other is linearized deformation measure [10] on
vector �eld ensembles. The pointwise method de�nes the distance
between ensemble pathlines by accumulating their pointwise dis-
tances along timesteps. It requires time series data of equal length.
In general cases, truncating the longer series or padding zeros to the
shorter one is performed to meet the equal-length constraint . More
important, the pointwise distance is often sensitive to small per-
turbations or outliers. However, simulation data are always noise-
prone because of the inaccuracy of data generation and collection.
Thus, outliers and missing data are not rare. A small perturbation
often induces severe misalignments between point pairs and exag-
gerates the measured distances. The longer the pathline is, the
larger the magni�cation that will be introduced. The misalignment
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Figure 1: Pointwise misalignments caused by small perturbation or
asymmetric variation in velocity direction: a single point in just one
pathline (a); shifting occurrence time of a wavelet (outlier) (b); a 2D
illustration of dynamic time warping.

can be caused by just one point with a small perturbation in the ve-
locity direction or by just one shifting occurrence time of a wavelet
(outlier), as shown in Figure 1a and Figure 1b. Furthermore, the
exaggerated and unpredictable distances substantially enlarge the
distribution range of the distance between ensemble pathlines, re-
sulting in data in higher dynamic range.

In addition to the pointwise method, a new metric [10] was pro-
posed to measure linearized deformation within a given Lagrangian
neighborhood in ensemble vector �elds. It employs the principal
component analysis (PCA) to measure shape deformations for com-
putational �uid dynamics simulations. One drawback of the PCA-
based method is that the large joint variance cannot accurately and
fully describe the variation in ensemble vector �elds, because it re-
veals the linearized shape deformation derived from the �owmap.
Moreover, the PCA-based method estimates the variance over a
�nite amount of time. It needs to trace pathlines repeatedly to
compute joint variance among different time ranges. Ensemble
analysis is thus expensive because of the computationally intensive
pathline tracing, if scientists want to explore the ensemble behav-
ior among different time ranges. Furthermore, pathlines can take
1,000 times more space than the unsteady vector �eld itself [7],
which usually poses formidable challenges to handle and visualize
the ensemble vector �eld data because of the multiple simulation
members.

Arguably, scientists have different needs when studying ensem-
ble behavior. They may be more concerned about whether the en-
semble runs go through the common regions and may ignore the
small timestamp differences of the peer elements on ensemble path-
lines. For example, Mirzargar et al. [16] have designed three en-
semble pathline parameterizations to visualize the variability. One
of their parameterizations, the arc-length parameterization, focuses
on comparing the geometry locations and ignores small timestamp
differences. Therefore, the traditional pointwise comparison along
the pathline timestep is an overconstrained condition. It is avail-
able for using more elastic distances in order to get more expressive
comparative visualization.

Dynamic time warping (DTW) and pointwise Euclidean distanc
are two widely used distance measures for time series data [21].
DTW is an elastic distance measure, which solves the problem of
local time shifting of time series and can work with time series



of different lengths. However, all the elements in DTW must be
matched, even the outliers, as illustrated in Figure 1c. The begin-
ning and end timesteps in one series are always mapped to the be-
ginning and end timesteps of the other series [13], which is overcon-
strained and in�exible. A small portion of outliers in the beginning
and the end of the timesteps often leads to incorrect results [21].
Moreover, computing the DTW distance is expensive, because the
time-consumingLp norm must be computed.

To remedy these problems in traditional pointwise and DTW dis-
tances, we design an adaptive distance quanti�cation method based
on the longest common subsequence (LCSS) [9], to measure the
similarity by quantifying the common passing regions shared by
different ensemble runs. The proposed LCSS-based method has
four bene�ts. First, it can work with time series of different lengths.
Second, it is robust to small perturbations and outliers, compared
with pointwise distance. Third, it is less sensitive to sampling
timesteps, because it does not force to match the end points in the
DTW distance. Fourth, it is more ef�cient than DTW and thus more
suitable for measuring the distance of ensemble pathlines. It allows
multiscale temporal comparison without repeatedly tracing path-
lines, and it takes lower storage cost for temporal trend analysis.

2 BACKGROUND

In this section, we �rst de�ne a pathline in a 3D vector �eld. Then
we review the few existing literature on the visualization of vector
�eld ensembles and line comparison. We consider a pathlineP in
3D ensemble vector �elds, which consists of a set of consecutive
points,P = fhx1;y1;z1; t1i ;hx2;y2;z2; t2i ; � � � ;hxs;ys;zs; tsig , where
s is the number of points. Because the evolution time of the en-
semble pathlines is nonuniform, we need to resample along the
timestep. After that, the last dimension of the timestep can be re-
duced as follows, wheret is the number of the resampled points.

P0= fhx1;y1;z1i ;hx2;y2;z2i ; � � � ;hxt ;yt ;zt ig (1)

2.1 Visualizations of Vector Field Ensembles

Ensemble pathlines are produced by sets of ensemble runs simu-
lated by varied models or under different parameter constraints on
the ensemble vector �elds. The analysis of ensemble pathline is
of great signi�cance to simulation science applications such as cli-
mate change, operational weather forecast, and computational �uid
dynamic.

One of the classic methods for comparing ensemble vector �elds
is the pointwise method. This method is used in many recent
works [7, 22]. It measures distance or summarizes feature between
ensemble pathlines by their discretized points, which are sampled
along the evolving timestep of the pathline or preprocessed by some
speci�c parameterization. Guo et al. [7] use the pointwise distance
to compare ensemble pathlines. They release the seeds evenly at
each �xed location in ensemble �elds, where a set of pathlines are
integrated until they reach the end of their lifetime or go out of the
�eld domain. The 2D line bands are summarized by pointwise lo-
cations in the contour boxplot method [22], which was designed to
reveal the uncertainty in a 2D simulation data. Inspired by con-
tour boxplot, a more generalized tool named curve boxplot [16] has
been proposed to extend to 3D or even higher dimensions in order
to extract the variability. Theoretically, they both leverage the math-
ematical notion of data depth, which can help reveal how central a
line instance is within the distribution of the ensemble members.
Based on the contour boxplot and curve boxplot, a novel technique
named streamline variability plots [5] has been proposed to show
the clustering trends of the ensemble streamlines.

To quantify the linearized deformation presented in Lagrangian
neighborhood for each �xed locations in ensemble �elds, Hummel
et al. [10] proposed a PCA-based method for computational �uid
dynamics simulations. This method can evaluate both individual

and joint transport variance to reveal the characteristics of the en-
sembles. Most high values of joint variance are expected in regions
with strongly varying transport behavior across the runs of the en-
semble. The shape changes of the neighborhood cannot fully rep-
resent the variation among ensemble pathlines because they place
more emphasis on the sensitivity formed within the Lagrangian
neighborhood. Jarema et al. [11] have designed interactive similar-
ity matrices and glyphs to compare the vector �eld ensembles; how-
ever, this comparison is limited to a 2D scenario. Another classic
shape deformation evaluation approach for vector �eld is FTLE [8].
Uncertainty visualization in ensemble data can illustrate the charac-
teristic features of the simulations. Uncertainty presented in vector
�eld ensembles can be quanti�ed by standard deviation, interquar-
tile range, and width of 95% con�dence interval [18]. Shen et
al [19] proposed a framework to do data-level comparison. It can
reveal subtle differences between two datasets with different grid
resolutions through intermediate mesh. If observation data is avail-
able, it can estimate the predictive uncertainty [6], which can help
identify potential outlier runs. Clustering is one of most powerful
techniques used to extract the uncertainty or other ensemble behav-
ior [20, 3]. The histogram clustering method is used in an interac-
tive tool named Multi-Charts [3]. It allows to explore the ensemble
data at multiple levels (focus and context).

2.2 Line Comparison

Measuring the line similarity is a fundamental problem in visual-
ization, including the �eldline similarity in vector �elds and the
curve similarity in general data. Fieldline similarity in vector �elds
can be used to extract their statistical features, especially for their
uncertainties and the summarized geometric information. Previous
approaches to modeling the similarity between time series include
the use of the Euclidean and DTW distance [21]. A similarity quan-
ti�cation approach [2] based on pointwise Euclidean distances for
measuring streamline proximity has been used to select streamlines
near interesting �ow features, such as critical points and separa-
tions. Vlachos et al. [21] have proposed an LCSS-based method to
discover similar tracking features of animals or humans. However,
this method places more emphasis on the shape similarity between
two time series data instead of the block-based geolocation differ-
ences in ensemble simulations. Moreover, tracking data is different
from ensemble data: the former is closely related to human behav-
ior. The measurement of curve similarity is an indispensable step
in curve comparison. Chambers and Wang [1] developed a novel
curve similarity measure between homotopic curves based on how
hard it is to deform one curve into another one continuously; they
de�ned the minimum possible surface area swept by a homotopy
between the curves. Recently, Liu et al. [15] designed a sketch-
based method to extract user-de�ned derived feature (i.e., vortex
line) from vector �eld ensembles and compare them in some linked
views.

3 OUR METHOD

In this paper, we employ a novel metric, namely longest com-
mon subsequence, to measure the distance between ensemble path-
lines. The LCSS distance measures how many common blocks
the ensemble pathlines pass through and computes their similar-
ity through the number of shared blocks. Figure 2 illustrates the
pipeline of our proposed approach. Initially, the pathlines are traced
by numerical integration, namely, the Runge-Kutta method. Our
algorithm is parallelized with a MapReduce-like framework [12]
in order to ef�ciently handle large-size ensemble data. Then the
parallel LCSS sequence encoding and the parallel LCSS distance
computation are integrated in the framework. The LCSS sequence
encoding scheme is to encode the pathlines into LCSS sequences,
which are the input parameters of the LCSS algorithm. The block
indices (i.e., LCSS sequence codes) are saved to support multiscale
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Figure 2: Pipeline of our work. We �rstly trace pathlines in p arallel from the raw ensemble data. By employing the parallel LCSS sequence
encoding and distance metric, the generated pathlines then are encoded into LCSS sequences for further visualization and multiscale temporal
comparison.

temporal comparison at lower storage cost and without repeatedly
tracing the pathlines. For the �nal visualization part, we use a GPU-
based volume rendering method to show the variation �eld and sim-
ilarity �eld, following the method in [14].

3.1 LCSS-Based Distance Measure

The LCSS algorithm �nds the longest subsequence common to all
sequences in a set of sequences (often just two). Note that a sub-
sequence is different from a substring; with the former there is no
need to be consecutive for the elements in the original sequence.

Let P andQ denote two ensemble pathlines with lengthm and
n, and letBlockIdx(P; i) be the index of the block where thei � th
point inP locates. The recursive de�nition of our LCSS distance is
given by Equation (2).

L(i; j) =

8
>>>>><

>>>>>:

0; i f i = 0 or j = 0;
1+ L(i � 1; j � 1); i f i ; j > 0 and

BlockIdx(P; i) = BlockIdx(Q; j);
max(L(i � 1; j);L(i; j � 1)) i f i ; j > 0 and

BlockIdx(P; i) 6= BlockIdx(Q; j):

(2)

To encode the ensemble pathlines into LCSS sequences (the in-
put series of LCSS algorithm), we need to partition the data into
multiple blocks. A unique sequence code will be encoded from
each block index. Both the pointwise uncertainty computation [7]
and the band depth computation [22] select every two pathlines
each time, in order to compute the individual distance. Then the
combinatorial groups of cases are summarized in to compute the
overall distance and the inclusion probability, respectively. In our
method, this scheme is followed to perform LCSS computation for
every two pathlines each time. Then the overall distance is summed
across all ensemble runs and normalized. If there areN different
simulation runs in an ensemble, the normalized similarity value can
be calculated according to Equation (3), whereLCSS(runp; runq) is
the LCSS length (similarity) between any two ensemble pathlines
(P andQ for runp andrunq) at an identical seeding position.

Sp;q =
2

N(N � 1)
(
N� 1

å
p= 1

N

å
q= p+ 1

LCSS(runp; runq)
max(m;n)

) (3)

Figure 3 depicts a 2D illustration of block-index encoding for
two pathlines. The longest common subsequence for these two runs
is (0, 1, 2, 2, 3, 6, 8, 9). We consider all timesteps of the pathline as
the elements of the sequence. Therefore, the length of common sub-
sequence in block 2 should be 2, and the length of the longest com-
mon subsequence is 8 instead of 7. Then the normalized similarity
value is obtained by dividing the maximum timesteps of the path-
lines according to Equation (3). The normalized similarity value
is approximately 0.615 (8 out of 13) in this case. Likewise, the
normalized variation value is 0.385 (5 out of 13).
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Figure 3: 2D illustration of the block-index encoding and subse-
quence comparison for multiscale temporal comparison. The block-
index sequence of Run 0 is (0, 1, 2, 2, 3, 13, 14, 15, 16, 6, 7, 8, 9).
The sequence of Run 1 is (0, 1, 2, 2, 3, 4, 5, 6, -4, -3, -2, 8, 9).

3.2 Variation Field and Similarity Field Generation

Domain scientists are interested in the regions with high variation
and high similarity across different simulation runs. Thus, in this
work we compute similarity and variation by using different block
sizes to �lter out the uninteresting in-between values. If scientists
want to see the regions with high variation, the block sizes can be
set at a relatively larger value. Likewise, if they want to see the
regions with high similarity, the block size can be set at a smaller
value. This scheme makes the distributions of both similarity values
and variation values much more balanced. In contrast, using identi-
cal block size to compute the similarity �eld and variation �eld will
often induce too much visual clutter; and the distributions of the
�nal distance �elds will often be imbalanced. Section 6.1 provides
more details about the disadvantages of using identical block sizes.

Figure 4a shows two partitioning cases with different scales of
block sizes. We can easily get the regions with high variation val-
ues by using a larger block size, and can obtain high similarity re-
gions by using a smaller block size. Figure 4b shows the encoding
metaphor for the 3D case, which indicates the process of assigning
a block index to each block. If the LCSS block size is given, the
raw data domain can be logically partitioned into multiple blocks
around the seeding point, which is the original point of the encoding
coordinates. After the variation �eld and similarity �eld are gen-
erated, we employ a clustering algorithm named DBSCAN [4] to
highlight the regions with high variation. The clustering algorithm
selection in the �nal visualization stage is not crucial; it is used just
to draw a box to highlight the relatively continuous regions with
high variation. We select DBSCAN because it can group points
that are closely packed together, especially for the points with many
nearby neighbors.
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Figure 4: LCSS encoding metaphor: (a) two different spatial scales
to partition the data; (b) Encode the block-index into LCSS sequence
code along the seed point. The central red box shows the block
containing the seed of the current ensemble pathlines.

3.3 Multiscale Temporal Comparison at Lower Storage
Cost

Scientists often are interested in analyzing the ensemble behavior
simultaneously over multiple time ranges. They even need to do
temporal exploration in a multiscale way, for example, to analyze
the data over one hour, one day, or one month. However, the com-
putation of pathline is expensive because of the intensive integra-
tion. Pathlines can take 1,000 times more space than the unsteady
�ow �eld itself does [7]. Thus a multiscale temporal comparison
for the traditional pointwise method is challenging. Moreover, both
PCA-based variance and the FTLE require repeatedly tracing the
pathlines for revealing the temporal trends, while our LCSS-based
method requires only one tracing, because we can compute LCSS
between sub-subsequences as shown in Figure 3. Furthermore, our
method allows multiscale temporal comparison at a lower storage
cost. We store the LCSS sequences that take much less space. Each
resampled pathlineP0in Equation (1) should be encoded into LCSS
sequence codesC = f c1;c2; � � � ;cng, which is the input of the LCSS
algorithm. Therefore, in theory, about one-third of the storage space
is needed, because it needs only a single integer for an LCSS se-
quence code instead of three consecutive �oating points for the in-
termediate pathlines (Equation (1)).

4 IMPLEMENTATION

We integrate the LCSS computation into a modi�ed version of the
DStep framework [12] to boost the ef�ciency of pathline tracing.
It can achieve high scalability by its amphibious scheme on data-
parallel and task-parallel, making the most intensive computation
(i.e., pathline tracing) more ef�cient and effective. In the frame-
work, processors are dynamically assigned to four types of roles:
steppers , reducers , writers , and communicators .
Two public callback functions,dstep() andreduce() , are pro-
vided to conduct the domain traversal across the whole ensemble
�eld. Algorithm 1 is the pseudo code of the functionreduce() .
In this function, the ensemble pathlines �rst are resampled uni-
formly along the timestep; then their LCSS sequence code can be
obtained by encoding the block index.

5 EVALUATION

We test and evaluate our approach on three different datasets.
The �rst one is a synthetic dataset. The second one is a simu-
lation dataset, which is simulated by the Weather Research and
Forecasting (WRF) Model.1 The third one is also a simulation
dataset, which was simulated by the Atmospheric General Circula-
tion Model (AGCM) of Goddard Earth Observing System, Version
5 (GEOS-5). We conduct all our experiments in a parallel environ-
ment. The platform is a PC cluster with 8 nodes, each equipped
with two Intel Xeon E5520 CPUs (quad core), operating at 2.26
GHz and with 48 GB main memory.

1http://www.wrf-model.org

Algorithm 1 reduce() function.
function REDUCE(seed, pathlineset[])

for p = 1 toN do . Resample pathlines and compute their
sequence codes

pathlinesp  resamplepathline(pathlinesetp)
sequencerunp  get sequencecode(pathlinesp)

end for
for p = 1 toN � 1 do

for q = p+ 1 toN do . Compute LCSS between every
two runs

Sp;q(seed) LCSS(sequencerunp, sequencerunq)
end for

end for

V(seed) 1:0� 2
N(N� 1) (

N� 1
å

p= 1

N
å

q= p+ 1
Sp;q(seed))

for p = 1 toN do
emit write(seed, sequencerunp)

end for
savevariation(V(seed)) . Save variation value into a

global array to write latter
end function

5.1 Sensitivity to Outliers

The synthetic dataset has two runs, the base run is a cylinder �ow
dataset (Reynolds number is 100) on a 400� 100 grid. The velocity
magnitude of the base run is about 0.05 in average. The synthesis
run is generated by adding Gaussian noise (m= 0;s 2 = 0:001) to
each velocity component of the base run. Figure 5 shows the en-
semble pathlines traced from the synthetic data. We conduct the
tests of sensitivity to outliers on the pointwise distance, the DTW
distance, and the LCSS distance. For the DTW distance, we use an
improved version of the DTW algorithm, named FastDTW [17], to
perform all the comparison tests. The block-index encoding func-
tion of DTW is the same as that of LCSS; hence, the input of DTW
and LCSS are identical.

In this experiment, we �nd the pointwise distance is more sensi-
tive to outliers, compared with the other two elastic distances (i.e.,
DTW and LCSS). If we select 0.5% of the grid cells in the synthe-
sis run and add random noise to their velocity components, there
will be 97.6% grid cells varied by more than 1%, 96.98% grid cells
varied by more than 5%, and 96.23% grid cells varied by more than
10% for the pointwise distance, as shown in Table 1 (“PW” is short
for the pointwise distance hereafter). There are two reasons. First,
the pointwise distance deals with time series data of equal length.
It needs to truncate the longer one if their lengths are not exactly
the same. Second, the pointwise distance may accumulate the dif-
ferences produced by outliers along its life-time. It is not enough to
use only one threshold to measure the sensitivity. Thus we use three
thresholds to reveal the distribution of the changing rate. We notice
that all distance �elds are normalized into the ranges between 0.0
and 1.0. From Table 1, we can also see that DTW is a little more
sensitive to outliers than LCSS.

Distance
Sensitivity to Outliers

1% 5% 10%
PW 97.60% 96.98% 96.23%

DTW 59.11% 58.72% 58.22%
LCSS 55.03% 54.64% 52.59%

Table 1: Sensitivity to outliers when the noise is 0.5%. All distance
�elds are normalized. The sensitivity are measured by three chang-
ing rate thresholds.
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Figure 5: Pathlines traced in the 2D synthetic ensemble data. Top:
pathlines of two runs (base run and original synthesis run). Bottom:
additional 0.5% noise and data missing (velocity component is 0) are
randomly added to each velocity component of the synthesis run.

5.2 Sensitivity to Pathline Timestep

If the pathlines are traced by a unreasonable timestep or are down
sampled, the DTW distance function will be affected more severely
because it is more sensitive to the timestep. In this section, we con-
duct a sensitivity test on the timestep for the three distances. We
resample the ensemble pathlines by changing the timestep from 0.2
to 0.5, 1.0, and 1.5, as shown in Table 2. We expect that the point-
wise distance is the least sensitive to the sampling timestep, because
the Euclidean distance would be roughly unchanged after distance
�eld normalization. The truth is that the pointwise distance values
in the vector �eld will be scaled by the sampling rates accordingly.
However, DTW is much more sensitive than LCSS, because all the
elements in DTW must be matched, as shown in Figure 1c. Fur-
thermore, the beginning and end timesteps in one series are always
mapped to the beginning and end timesteps of the other series [13].

Timestep Distance
Sensitivity to Timestep

5% 15% 30%

0.5
PW 5.82% 2.39% 1.28%

DTW 57.40% 44.96% 32.96%
LCSS 49.43% 26.44% 13.49%

1.0
PW 10.28% 4.04% 2.16%

DTW 64.05% 53.66% 45.13%
LCSS 56.41% 31.91% 17.42%

1.5
PW 15.56% 5.77% 3.18%

DTW 69.37% 60.43% 53.43%
LCSS 56.12% 32.93% 19.58%

Table 2: Sensitivity of the three distances to resampling timestep
on WRF data. The baseline timestep is 0.2, and the resampling
timesteps are 0.5, 1.0, and 1.5.

5.3 Ground Truth Evaluation

To further evaluate our LCSS-based distance measurement com-
pared with pointwise distance and DTW distance approaches, we
perform a ground truth test on a 2D cylinder �ow dataset. A new
synthesis run (different from the above-mentioned synthesis run in
the outlier sensitivity test) is generated by adding noise with ran-
dom directions. From the bottom to the top of the data domain, the
intensity of the random noise is increasing: 0.0% to 0.05%, which
is much less than that of the above outlier sensitivity test.

All three distance measurements are applied to compute the vari-
ation. The results are shown in Figure 6. We �nd that the LCSS-
based distance works well in revealing the ground truth (i.e., the
gradual changes from high to low), while the pointwise variation
�eld and DTW variation �eld show strong discontinuous, which

(c)

(b)

(a)

Figure 6: Ground truth test on a 2D synthetic time-varying �ow
dataset: (a) variation �eld produced by pointwise distance ; (b) varia-
tion �eld produced by DTW distance; (c) variation �eld produ ced by
our LCSS distance.

hide useful information because of the lack of enough accuracy.
Furthermore, we �nd about 80% pointwise variations distributed
among the range from 0.00 to 0.01 (within 1%), which greatly de-
generates the �nal visualization. Throughout this paper, we employ
a blue-red color scale for the variation �eld (red is higher) and a
yellow-green color scale for the similarity �eld (green is higher).

5.4 Performance and Storage Cost

We test the performance of the three distance measurements on syn-
thetic data and simulation data. Three different step sizes are taken
to compute the average timing results. Each result is the average
performance over three tests. As shown in Table 3, the performance
of LCSS is a little better than that of DTW on both the synthetic
and the simulation data especially for short sequences. But when
the length of sequences is relatively longer, their timing results are
closer. Although the performance of the pointwise distance is the
best (it just summarizes the pointwise Euclidean distances), it has
too many drawbacks, as claimed in this paper.

Dataset Step size Length PW Time DTW Time LCSS Time

Synthetic
Data

0.01 242.85 0.16 19.45 14.89
0.02 121.45 0.085 9.71 3.82
0.05 48.43 0.038 3.83 0.64

WRF
0.05 166.09 0.69 125.38 85.42
0.10 83.56 0.37 64.25 21.50
0.25 33.77 0.18 27.80 3.53

Table 3: Average timing results (in seconds) for the three distances
computations. The numbers of processors of the two tests are 2
and 32, respectively. The total numbers of seeds are 80,000 and
540,000, respectively. “Length” is the average length of the traced
pathline. The “PW Time,” “DTW Time,” and the “LCSS Time” are the
corresponding distance function call times on all nodes.

Our method allows multi-temporal comparison without repeat-
edly tracing pathlines, because it enables sub-subsequence com-
parison with different lengths. More important, it allows reuse of
the LCSS sequence codes (block indices) to do multiscale temporal
comparison under lower storage cost; because we store the integer
sequence codes, which takes much less storage than the pathlines
themselves do. Table 4 shows the comparative storage cost for the
intermediate pathlines and the LCSS sequence codes. For the WRF
data and the GEOS-5 data, the storage cost for the sequence codes
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Figure 7: (a) Similarity �eld output by LCSS method with the s ame block size as (h); (b) variation �eld output by LCSS metho d with the same
block size as (e); similarity �eld (c) and variation �eld (f) output by pointwise method; similarity �eld (d) and variati on �eld (g) output by DTW
method; similarity �eld (e) and variation �eld (h) output by LCSS method; The boxes in (e) and (h) are clustering regions with high LCSS variation.

are, respectively, 45.52% and 29.47% of that for pathlines them-
selves, which is signi�cant when one wishes to make frequent mul-
tiscale temporal comparisons.

Dataset Spo Slo Ro

WRF 18.43 GB 8.39 GB 45.52%
GEOS-5 48.38 GB 14.26 GB 29.47%

Table 4: Storage cost between the intermediate pathlines and the
LCSS sequence code. Spo and Slo are the storage costs of pathlines
and LCSS sequence code, respectively; Ro is the storage percentage
of the original LCSS sequece codes in the original pathlines.

6 RESULTS

In this section, we compare the results generated by our method
and the two comparison methods (i.e., pointwise and DTW) based
on two simulation datasets.

6.1 WRF Simulation Data

WRF simulations often consist of two runs. One run is a base run,
which is derived from the real observation data. The other run is
a comparison run, which is often simulated under some idealized
conditions. With large-scale industrialization and increasing urban-
ization all over the world, scientists predict urbanization as one of
the key factors in weather climate change. In this data, the simula-
tion is conducted spatially on eastern China, which includes many
metropolitans such as Shanghai, Nanjing, Hangzhou, Hefei, etc.
They are China's most urbanized and industrialized cities.

The idealized condition of this WRF data is that the urban areas
are replaced by vegetation landuse. The scientists who conducted
this simulation wanted to determine the impact of urbanization on
climate change in eastern China. The highly urbanized regions are
expected to have high variation according to the input parameters of
the simulation. The data is organized in grid cells 100� 100� 27.
The time range of this simulation is from 7/1/2012 00:00:00 UTC
to 7/10/2012 18:00:00 UTC. Hourly average data is generated by
this simulation, and the total storage size is about 8 GB.

If we use the same block size to compute the similarity and vari-
ation, it will often produces too much visual clutter, as shown in the
left part of Figure 7. Different block sizes can help �lter out unin-
teresting values. Therefore, we set the block size for the variation
�eld larger than that for the similarity �eld. After many tests, we
found 16� and 1� step sizes to be an optimal pair.

7/1/2012 7/2/2012 7/3/2012

7/7/2012 7/8/2012 7/9/2012
Figure 8: Multiscale temporal comparison for WRF data. Daily com-
parative visualization from 7/1/2012 to 7/9/2012. Daily trends (detail)
and weekly trends (overview) can be analyzed simultaneously.

The right part of Figure 7 shows the comparative results. We
see that the similarity �eld (Figure 7c) computed by the pointwise
method is sensitive to outliers and that the distribution of the sim-
ilarity values is skewed. Thus, it is dif�cult to get a proper trans-
fer function to reveal detailed information even after normalization.
Compared with the pointwise similarity �eld, the similarity �eld
(Figure 7d) output by the DTW distance is more expressive. How-
ever, it still has many vague regions between mainland China and
the East China Sea. In our method, instead, the similarity �eld re-
veals more meaningful and interesting results. For example, the
similarities are high over the East China Sea and the regions with
high altitude, where the in�uences of urbanization are relatively low
(domain knowledge from the experts), as shown in Figure 7e.

Our LCSS variation �eld can also reveal much more expressive
results. The variations over the primary metropolitans in eastern
China are quite large. For example, three clustered regions are high-
lighted in the variation �eld. The �rst region is over the city group
including Shanghai (121:4� E, 31:2� N), Suzhou (120:6� E, 31:3� N),
Wuxi (120:6� E, 31:3� N), Changzhou (120:3� E, 31:6� N), and Nan-
jing (118:7� E, 119:9� N) in the pink box in Figure 7h. The sec-
ond region is over Hefei (117:2� E, 31:5� N), the provincial capital
in Anhui province as shown in the green box. The third region is
over Hangzhou (120:2� E, 30:3� N), the provincial capital of Zhe-
jiang province, as shown in the red box. However, we cannot �nd



these interesting results in the pointwise variation �eld (Figure 7f)
and DTW variation �eld (Figure 7g), although the overall distribu-
tion in the pointwise variation �eld is roughly similar to that of the
LCSS variation �eld (Figure 7h).

Figure 8 illustrates a case for multi-temporal comparison. The
similarity �eld is sharply diversi�ed on the second day (7/2/2012
00:00:00 UTC). One week later, it is becoming more and more
steady, and is almost invariable from 7/7/2012 00:00:00 UTC to
7/9/2012 00:00:00 UTC. Overall, the spatial distribution of the sim-
ilarity is approximately �xed from the second day and gets steadier
from then on.

We notice that our method is not sensitive to the block size. We
have changed the block size by 10%, 20%, and 50% and �nd similar
results, because the block size is used just to �lter out uninteresting
data. Moreover, although we use different block sizes, only one
pass computation is needed in our parallel pathline tracer.

6.2 GEOS-5 Simulation Data

We also use the GEOS-5 simulation data to test our approach. The
data was generated by the simulation model with 72 pressure lev-
els and a horizontal resolution of 1� latitude� 1:25� longitude. It
covers the troposphere, stratosphere, and partial mesosphere (upper
bound is 85 km). It has 8 runs with standard monthly output from
January, 2000 to December, 2001. Each run of the data is stored in
24 individual �les corresponding to different timesteps. The total
size of this simulation data is about 76 GB.

We �nd that the results output by LCSS distance on GEOS-5 data
are more expressive than that of pointwise distance. We do not get
DTW distance results for the GEOS-5 data because the computation
on DTW is too costly; the resources of our parallel environment
will quickly run out in thereduce() function. From the variation
�eld, we can see that the variation near the North Pole and the the
South Pole is extremely high compared with most of other regions,
especially for the regions around the equator. Additionally, we can
see the high similarity distributed in low-altitude and high-altitude
areas around the stratosphere, as shown in Figure 9d. This �nding is
consistent with the domain knowledge provided by domain experts
and cannot be found with the pointwise method in Figure 9a.

More important, we can see that the variation �eld computed
by our LCSS-based method (Figure 9b) is different from that com-
puted by the pointwise method (Figure 9a). Most of the regions
with high variation computed by the pointwise method are near the
equator. However, the ground truth is that the ensemble pathlines
behave similarly around the equator, as shown in Figure 9c. There
are two major reasons why the pointwise distance on this data is dif-
ferent. First, the pointwise distance deals with time series data of
equal length; it needs to truncate the longer one if their lengths are
not the same. Second, the pointwise distance is more sensitive to
outliers, missing data, and extreme values due to severe misalign-
ment. We observe that the velocity around the equator is usually
much larger and has a higher dynamic range of distribution com-
pared with that of other regions (e.g., the North Pole Circle and the
South Pole Circle), which will subsequently result in much more
extreme values and outliers. Moreover, considerable data is miss-
ing around the equator during the data collection and processing of
the simulation.

7 DOMAIN EXPERT FEEDBACK

We have consulted domain experts in climate and environmental
science and received considerable positive feedback. The scientist
who provides us the WRF data has been engaged in climate sim-
ulations for a long time. He showed much appreciation about our
approach and was glad to see our �ndings. Feedback about the
WRF data tests is listed as follows.

(1) The high variation regions over the primary metropolitans in
east China, and the high similarity regions over the East China Sea,

are consistent with our knowledge and our initial expectations.
(2) The diversity of similarity that goes steady in the �rst three

days is a signi�cant information about this WRF simulation.
(3) It would be better if it can provide enough analysis on how

diversity behaves between different runs, because the diversi�ed ve-
locity can help us explore the diffusion pattern.

We have also received feedback from the domain expert about
the GEOS-5 data.

(1) Many high similarity distributed in the stratosphere is con-
sistent with our knowledge.

(2) Ensemble pathlines around the equator coincide with the
�ndings.

(3) The much less storage requirement of the proposed approach
is quite signi�cant for the ensemble simulation analysis.

According to the feedback, our proposed approach is capable
of achieving more meaningful and expressive results than conven-
tional methods achieve. The reason is that the LCSS distance is
more robust and more �exible for computing the distance among
ensemble pathlines. They can provide more accurate visualization
results.

8 DISCUSSION

In our experiments, we �nd that our method is relatively robust to
block size. If we change the block size slightly, the distributions
of both similarity �elds and variation �elds are almost unchanged.
In the WRF simulation data, we increase the two block sizes by
10%, 20%, 50%, then decrease them by 10%, 20%, 50%, and �nd
distributions similar to that of Figure 7e and Figure 7h. That is, we
can also �nd the same results as described in Section 6. The primary
role of block size is to �lter the distance values. We use a smaller
block size to compute the similarity �eld and a larger block size
to compute the variation �eld in order to get the regions with high
similarity and high variation, respectively. Even if the distribution
is changed slightly, we can adjust the global transfer function to a
small extent to get the same results. Therefore, we can get the same
results as long as our method satis�es two conditions. First, it needs
a smaller block size for similarity computation than that of variation
computation. Second, the block size should not be extremely large
or extremely small. Both conditions are easy to satisfy.

In our results, we show just the overall similarity �eld and vari-
ation �eld. However, one can easily compute results for any two
vector �elds among the ensembles, because the LCSS algorithm is
designed to compute the distance between two vector �elds. The
overall results are computed from each pair of two vector �elds ac-
cording to Equation (3), for two reasons. First, each pair of vector
�elds are potential to be used in further analysis. Second, the LCSS
algorithm based on multiple sequence is inef�cient.

Our method still has some limitations, however. First, we need
to estimate the average stepsize in order to assign the block size in
advance. If the block size is extremely large or extremely small, our
approach will fail. However, one can easily estimate the step size;
one just needs to write an applet to estimate the average step size
of the vector �eld for each run. Second, converting pathlines into
sequences can result in lossing information. We store the LCSS se-
quence codes to support reuse because the pathline tracing is time-
consuming. There are three components (x, y, andz) for each point
on the original pathline when the data is a 3D vector �eld, but only
one component (LCSS sequence code) for each point in our stor-
age. However, it is still useful unless the user wants to compute
the LCSS distances by different sampling rates. Third, the current
version of the implementation does not support vector �elds with a
nonuniform grid, (i.e., unstructured grid, hybrid grid, etc.), because
we use a classic linear 4D interpolation based on uniform grid when
tracing the ensemble pathlines. Nevertheless, our approach can be
used in nonuniform grid cases as long as the interpolation and path-
line tracing are extended to those data.
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Figure 9: Comparative results for GEOS-5 data. (a) Variation � eld computed by pointwise method. (b) Variation �eld (b) and similarity �eld
(c) computed by LCSS distance. The LCSS similarity �eld and t he ensemble pathlines around the equator behave similarly. (d) Similarity �eld
results from another perspective to see the similarity distribution along altitude. The boxes in (b) and dashed boxes in (a), (c), and (d) represent
the clustered regions with high LCSS variation.

9 CONCLUSIONS AND FUTURE WORK

We propose a novel LCSS-based measurement to compute the dis-
tance among vector �eld ensembles. Compared with the traditional
methods, our approach is robust to outliers, missing data, and the
pathline timesteps. It enables to reveal temporal trends at much less
storage cost. We evaluated our method on both synthetic and simu-
lation data, demonstrating the robustness of the proposed approach.
We also consulted domain experts to evaluate the �nal visualiza-
tion results. The feedback indicates that the proposed approach can
generate more meaningful and expressive results, because the re-
sults are well matched to the domain knowledge.

We plan to extend our approach to analyze scalar features. We
also plan to provide more visual analysis on how diversity behaves
between different simulation runs.
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