Summary

e Our target is the efficient, accurate and scalable solution of large-scale nonlinear
Stokes systems arising in the simulation of mantle flow with associated plate tectonics.

e Use Newton’s method for the nonlinear Stokes system and preconditioned Krylov
methods for the solution of the linearized systems.

e The discretization is based on adaptively refined meshes to resolve the strong varia-
tions in the viscosity, and a stable high-order velocity-pressure pair with discontinuous
pressure functions to guarantee local mass conservation.

e Efficient solvers are particularly important for inverse problems in mantle flow, which
require the repeated solution of large-scale nonlinear and linearized Stokes problems.

1. Mantle flow

Mantle convection is the thermal convection in the Earth’s upper ~3000 km. It controls
the thermal and geological evolution of the Earth and drives plate motion and mountain
building. Mantle flows are driven by the hot core and radioactive decay in the mantle itself.

Model equations

Rock in the mantle moves like a viscous, incompressible
fluid on time scales of millions of years. From conser-
vation of mass and momentum, we obtain that the flow
velocity can be modeled as a nonlinear Stokes system:

o] ...temperature

e u ...velocity
ep...pressure

o (T, u) ...viscosity

e Ra ~ 10° — 107 ... Rayleigh
number

e ¢, ...radial direction

-V [,u(T, u)(Vu + VUT)} +Vp=RaTe, (S1)

V-u=0 (S2)

The temperature and strain-rate dependent viscosity is commonly described by the follow-
ing rheology: el

Ty ) = (1) ) = F 0270 (e (u)) ™
érp IS the second invariant of the strain rate tensor, E, the activation energy, and n > 1.
Solver challenges

B Variation of viscosity 1 by up to
8 orders of magnitude.

B Highly localized features w.r.t.
Earth radius ~6371 km: plate
thickness ~50 km and shearing
zones at plate boundaries ~5—
10 km.

B Desired resolution of ~1 km
would result in O(10'?) degrees
of freedom on a uniform mesh

of Earth’s mantle. T o
(Visualization by L. Alisic)

2. Adaptive, high-order finite element discretization

Parallel octree-based AMR using the p4est library

B Hexahedral meshes with non-conforming elements.
B Parallel adaptive mesh refinement and coarsening.

B Octree algorithms enable fast neighbor search, repartitioning, and
2 .1 balancing.

B Scalable to at least hundreds of thousands of processors.
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Finite element discretization
N We. use high—order velo.c.ity-pressure pair.ings in (Qu)° x IP%SEJ or (Qu)° X Q%SEQ, which
satisfy the inf-sup conditions for conforming and non-conforming meshes.

B Algebraic constraints on element faces with hanging nodes enforce continuity of the
global velocity basis functions.

B Hexahedral elements allow for the basis functions derivatives to be calculated efficiently
using tensor products.

B Fast, matrix-free application of stiffness and mass matrices.

3. Large-scale parallel Stokes solver

Nonlinear solver: Inexact Newton-Krylov method

Given an iterate (u, p), the Newton update (u, p) for the Stokes system (S1), (S2) solves
the PDE

-V [,u’(T, u)(Vu + VﬁT)} +Vp=—r,
V-u=-—-r.
r and r are residuals and /(T u) is an anisotropic 4th-order tensor given by

n—1Vu+Vu')® (Vu+Vu')
n €+ €

p(Touw) = p(T) p(w) | I —

where 0 < ¢ < 11s a regularization parameter and I the 4th-order identity tensor. The next
Newton iterate is (a > 0 is the step size):

(UneWapneW) — (U,p) T &(ﬂvﬁ) :
B Newton update is computed inexactly via Krylov subspace iterative method.

B Krylov tolerance decreases with subsequent Newton steps to guarantee superlinear
convergence.

B Line search in direction (u,p) is conducted using the weak Wolfe conditions to ensure
reduction of residuals.

Linear solver: Preconditioned Krylov method

B Krylov method: Upper triangular block preconditioned GMRES (GMRES from PETSc).

B Schur complement preconditioner that can be written as a matrix consisting of two
blocks: (1) viscous block and (2) pressure Schur complement.

B The pressure Schur complement is approximated by a spectrally equivalent lumped
mass matrix weighted with the inverse viscosity, or by a BFBT approximation.

B Algebraic multigrid (AMG) V-cycle (Trilinos ML) with SOR smoother (PETSc) approxi-
mates the viscous block.

B AMG is called with a linearized version of the stiffness matrix, i.e., the high-order dis-
cretization is sparsified using trilinear elements based on the high-order degrees of free-
dom. This results in faster matrix assembly for Trilinos ML and is more suitable for AMG.

Parallel, hybrid geometric-algebraic multigrid for the viscous block

We will replace AMG with our new hybrid geometric-algebraic multigrid solver, which has
better scalability properties compared to Trilinos ML due to its mesh-based hierarchy setup.

B GMG-AMG approach matches geomet-
ric decomposition of the domain. GMG]

B AMG is used for small problem sizes on
small process counts. @QAMG @/@
B Smoothed aggregation algebraic multi- 151
grid ( Trilinos ML).
Scalability results for 3D Poisson problem on spherical domain with isotropic spatially vary-
Ing coefficient:
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124M elements, 5 GMG levels, AMG for coarse solve, 1 MPI process per core, Jaguar XK6.
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4. Linear and nonlinear convergence

We consider two test problems on a rectangular domain. Prior to invoking the solver, the
meshes were adaptively refined to resolve the variations in viscosity. The element pair-
ing (Qn)? x P%Sfl Is used for all tests. Further, we define the global viscosity variation
Ap = max(u)/ min(p) and the viscosity variation per element Ap® = max(p®)/ min(u°).

Convergence for single plate problem, plate thickness ~130 km

Linear solver: Convergence results for N = 2,4,6, and viscosity variation per element
Ap® < 10 (solid lines) and Au® < 100 (dashed lines). Different figures represent different
global viscosity variations Ap ~ 102,10°, 107. Note that the convergence behavior is rather
iIndependent of the polynomial order and that the convergence is poor for the larger Au°.

Convergence tests of linear solver on brick domain, E=7,Au=1.1e+03 Convergence tests of linear solver on brick domain, E=12,Au=1.6e+05 Convergence tests of linear solver on brick domain, E=17,Au=2.4e+07
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Convergence tests of nonlinear solver on brick domain, E=5,Au=3.8e+04 Convergence tests of nonlinear solver on brick domain, E=7,Au=1.9e+06
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vergence results with initial

Ap® < 10. Global viscos-
ity variations of solution are
Ap ~ 10* (left) and Ay ~
109 (right).
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Convergence for slabs problem with subducting & overriding plate

The extraction from the mesh (above) shows the initial adaptive refinement to resolve the
variations in the viscosity. The shearing zone between the plate boundaries of subduct-
Ing plate and overriding plate is modeled by reducing the viscosity by several orders of
magnitude.

Convergence tests of linear solver on brick domain, E=5, Au=1.5e+05 Convergence tests of linear solver on brick domain, E=7,Au=1.1e+06

Linear solver: Convergence

for N = 2; the viscosity in " EEIEEEIIIIEE L
the plate boundary (narrow T O N S A \
red zone) is reduced by mul-
tiplication with 1073, leading
to global viscosity variations
Ap ~ 10° (left)y and Ap ~ 100
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Nonlinear solver: Convergence (left), effective viscosity at solution with global variation
A ~ 107 (middle), and velocity field at solution (right).

Convergence tests of nonlinear solver on brick domain, E=4, Au=4.2e+07
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