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Introduction: Minimization problem

Find the minimizer x∗ ∈ R of the problem

min
x

Φ(x) :=


α

p
|x|p , α |x|p−q ≤ δ,

δ

q
|x|q + γ, otherwise,

with given
I exponents 1 ≤ q < p <∞
I parameters α, δ > 0

I γ := α
(
δ
α

)p/(p−q) (1
p −

1
q

)
x

Φ(x)

α
p

(
δ
α

)p/(p−q)
(
δ
α

)1/(p−q)
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Introduction: Objective, gradient, and Hessian

Parameters:
I p = 2

I q = 1.1

I α = 2

I δ = 0.5

Objective Φ
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Introduction: Numerical experiments

Standard approach:
Newton: 59 iterations
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Want:
Steepest Descend + Newton: 2 iterations
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Parameters: p = 2, q = 1.001, α = 2, δ = 0.5
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Minimization problem

Given dimensions d ∈ N and n ∈ {1, d, d× d}, domain Ω ⊆ Rd, and a
linear and bounded functional F : L2(Ω)n → R,

find minimizer U∗ : Ω→ Rn of min
U
J(U) :=

∫
Ω

Φ(U)− F (U)

using a generalization of the Huber loss:

Φ(U) := β +


α

2
|U |2 , α |U | ≤ δ,

δ |U | − δ2

2α
, otherwise,

with parameters α, δ > 0 and β ∈ R. x

Φ(x)

β

δ2

2α
+ β

δ
α
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Newton’s method: A quadratic model of the nonlinearity
Goal: Construct a model of the nonlinear objective J(U) locally around U .
Newton’s method approximates J with a Taylor expansion, truncated at
the second-order term: (g and H are gradient and Hessian resp.)

J(U + Û) ≈ J(U) + g(U)Û +
1

2

(
H(U)Û , Û

)
One Newton iteration involves:
1. Solve the linearized system for step Û (in variational form):(

H(U)Û , Ũ
)

= −g(U)Ũ for all Ũ

2. Backtracking/line search algorithm to find θ ∈ (0, 1] such that

J(U + θÛ) < J(U)− ε, for some fixed ε > 0

3. Update the solution: U ← U + θÛ
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Standard Newton linearization
The gradient and Hessian are the 1st- and 2nd-order variations of J :

g(U)Ũ :=

∫
Ω

(
χα+ (1− χ)

δ

|U |

)〈
U , Ũ

〉
− F (Ũ), χ :=

{
1, α |U | ≤ δ,
0, o.w.,(

H(U)Û , Ũ
)

:=

∫
Ω

〈(
χα+ (1− χ)

δ

|U |

(
I− U ⊗ U

|U |2

))
Û , Ũ

〉
The standard Newton linearization requires to solve for Newton step Û in∫

Ω

〈(
χα+ (1− χ)

δ

|U |

(
I− U ⊗ U

|U |2

))
Û , Ũ

〉
= −g(U)Ũ

The outer product term is computationally challenging because:

I Coefficient
(
I− U⊗U

|U |2

)
in Hessian represents an orthogonal projector

I Hessian has a zero eigenvalue associated to eigenvector (1− χ)U
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Locally perturbed Newton linearization
Introduce for U, S ∈ L2(Ω)n

Error term: E(U, S) :=
U

|U |
− S

Perturbation: D(U, S) := U − |U |S

We augment the previous gradient

g(U)Ũ =

∫
Ω

(
χα+ (1− χ)

δ

|U |

)〈
U , Ũ

〉
− F (Ũ)

by a model perturbation, D(U, S) 6= 0,

g(U, S)Ũ =

∫
Ω

〈
χαU + (1− χ)δS , Ũ

〉
− F (Ũ)(

D(U, S) , S̃
)

=

∫
Ω

〈
U − |U |S , S̃

〉
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Locally perturbed and reduced Newton linearization
The perturbed Newton linearization for step (Û , Ŝ) is∫

Ω

〈
χαÛ + (1− χ)δŜ , Ũ

〉
= −g(U, S)Ũ∫

Ω

〈(
I− U ⊗ S

|U |

)
Û − |U | Ŝ , S̃

〉
= −

(
D(U, S) , S̃

)
and has an explicit expression for the dual step

Ŝ =
U

|U |
− S +

1

|U |

(
I− U ⊗ S

|U |

)
Û

Substitute to get the perturbed and reduced Newton linearization for Û∫
Ω

〈(
χα+ (1− χ)

δ

|U |

(
I− U ⊗ S

|U |

))
Û , Ũ

〉
= −g(U)Ũ
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Improvements gained from perturbation∫
Ω

〈(
χα+ (1− χ)

δ

|U |

(
I− U ⊗ U

|U |2

))
Û , Ũ

〉
= −g(U)Ũ

∫
Ω

〈(
χα+ (1− χ)

δ

|U |

(
I− U ⊗ S

|U |

))
Û , Ũ

〉
= −g(U)Ũ

I Perturbation results in model error dependent regularization

I It maintains fast Newton convergence close to the solution

I− U ⊗ S
|U |

= I− U ⊗ U
|U |2

+
U ⊗ E(U, S)

|U |
→ I− U ⊗ U

|U |2
as E(U, S)→ 0

I It acts as a nonlinear preconditioner far from the solution

I Simple and computationally cheap update of the dual variable S given Û

S ← S + Ŝ =
U

|U |
+

1

|U |

(
I− U ⊗ S

|U |

)
Û
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Earth’s nonlinear rheology modeling the mantle & plates
Nonlinear constitutive relationship / rheology due to:
I Strain rate weakening exponent n ≥ 1 (ε̇ii(u) is 2nd invariant of strain rate)
I Yield strength τyield > 0 causing plastic yielding

Additional heterogeneity is introduced via:
I Exponential temperature dependence a(T ) (Arrhenius relationship)
I Plate decoupling factor 0 < w(x) ≤ 1 with orders-of-magnitude contrasts

µeff(T, ε̇ii(u)) := µmin + min

(
τyield

2ε̇ii(u)
, w(x) min

(
µmax , a(T ) ε̇ii(u)

1
n−1

))
µmax µmin plate decoupling

strain ratestrain rate
weakeningweakening

plasticplastic
yieldingyielding
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Mantle flow governed by incompressible Stokes equations
Nonlinear incompressible Stokes PDE (w/ free-slip & no-normal flow BC):

−∇ ·
[
2µ(ε̇ii(u)) ε̇(u)

]
+∇p = f viscosity µ, RHS forcing f

−∇ · u = 0 seek: velocity u, pressure p

Linearization (with Newton), then discretization (with inf-sup stable F.E.):[
A BT

B 0

] [
û
p̂

]
=

[
−r1

−r2

]
I High-order finite element shape functions
I Inf-sup stable velocity–pressure pairings: Qk × Pdisc

k−1 with order k ≥ 2

I Locally mass conservative due to discontinuous, modal pressure
I Non-conforming hexahedral meshes with “hanging nodes”
I Adaptive mesh refinement resolving fine-scale features of mantle
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Severe challenges for parallel scalable implicit solvers
. . . arising in global mantle convection:
I Severe nonlinearity and heterogeneity of Earth’s

rheology and anisotropy induced by it
I Sharp viscosity gradients in narrow regions

(6 orders of magnitude drop in ∼5 km)
I Wide range of spatial scales and highly

localized features, e.g., plate boundaries of size
O(1 km) influence plate motion at continental
scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements Qk × Pdisc

k−1, order
k ≥ 2, with local mass conservation; yields a
difficult to deal with discontinuous, modal
pressure approximation

Viscosity (colors) and
locally refined mesh.
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Stokes flow with yielding rheology: Minimization problem

Given viscosity µ > 0, yield strength τyield > 0, the 2nd invariant of the
strain rate tensor, ε̇ii := 1√

2
|∇su| with ∇su := 1

2(∇u +∇uT), and

Φ(∇su) =

2µε̇2
ii +

τ2
yield

2µ
, 2µε̇ii ≤ τyield,

2τyieldε̇ii, otherwise,

with Huber parameters α = 2µ, δ =
√

2τyield, β = δ2

2α =
τ2
yield

2µ ; consider

find minimizer u∗ : (0, 1)3 → R3 of

min
u
J(u) :=

∫
Ω

Φ(∇su)− f · u s.t. ∇ · u = 0



“Optimization-Based Perturbed Newton Methods for Fluids ” by Johann Rudi

Standard v.s. perturbed Newton linearization
Standard Newton linearization yields the system for step (û, p̂):
(Note: The viscosity in the Newton step is an anisotropic 4th-order tensor.)

−∇ ·

[
2

(
χµ+ (1− χ)

τyield√
2 |∇su|

(
I− ∇su⊗∇su

|∇su|2

))
∇sû

]
+∇p̂ = −rmom

−∇ · û = −rmass

Perturbed and reduced Newton linearization of the momentum equation:

−∇ ·
[
2

(
χµ+ (1− χ)

τyield√
2 |∇su|

(
I− ∇su⊗ S

|∇su|

))
∇sû

]
+∇p̂ = −rmom

where we defined, for u ∈ H1(Ω)d and S ∈ L∞(Ω)d×d, ‖S‖L∞ ≤ 1,

error: E(u,S) :=
∇su

|∇su|
− S, perturbation: D(u,S) := ∇su− |∇su|S
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Numerical results for Stokes flow with yielding rheology
Numerical comparison of solver convergence for 3D nonlinear Stokes flow.

The model problem smoothly incorporates low-viscosity plumes in a
high-viscosity background medium.

Yielding Mesh Standard Newton Perturbed Newton
volume level ` It. Newton #backtr. It. GMRES It. Newton #backtr. It. GMRES

∼45% 4 33 20 1469 10 0 379
∼45% 5 36 25 2255 12 0 664
∼45% 6 57 49 4255 13 0 876

∼65% 4 29 21 1559 18 10 965
∼65% 5 37 26 2464 17 9 1245
∼65% 6 48 39 3892 20 9 1707

∼90% 4 35 25 1505 19 11 872
∼90% 5 40 32 2147 21 11 1267
∼90% 6 32 21 2312 23 11 1811
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Inexact Newton–Krylov with AMR for global mantle models

I Robust Newton convergence w.r.t. nonlinear parameters that is largely
independent of the discretization; allows treatment of mantle models in an
inverse problem setting.

I Grid continuation at initial Newton steps: Adaptive mesh refinement to
resolve increasing viscosity variations arising from the nonlinear rheology.

I Velocity residual is measured in H−1-norm for backtracking line search; this
avoids overly conservative update steps � 1.
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w-BFBT: Robust inverse Schur complement approximation[
A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̂u
˜̂p

]
=

[
−r1

−r2

]
Ã−1 ≈ A−1 → MG V-cycle

S̃−1 ≈ (BA−1BT)−1

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

(
BC−1

w AD−1
w BT

)(
BD−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

Choice of diagonal weighting matrices Cw = Dw is critical for efficacy &
robustness [Rudi, Stadler, Ghattas, 2017].
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HMG: Hybrid spectral–geometric–algebraic multigrid

HMG hierarchy

spectral
p-coarsening
geometric
h-coarsening
algebraic
coars.

continuous nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

I Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral–geometric coarsening

I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);
sufficiently coarse meshes occupy only subsets of cores

I High-order L2-projection onto coarser/finer levels

I Chebyshev accelerated Jacobi smoother with tensorized matrix-free
high-order stiffness apply; assembly of high-order diagonal only
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Extreme weak scalability on LLNL’s Sequoia supercomputer
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[Rudi, Malossi, Isaac, Stadler, Gurnis, Staar, Ineichen, Bekas, Curioni, Ghattas, 2015]
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Given: Observational data [Collab. withM.Gurnis, Caltech]

I Current plate motion from GPS
and magnetic anomalies

I Topography indicating normal
traction at Earth’s surface

I Plate deformation obtained from
dense GPS networks

I Average viscosity in regions
affected by post-glacial rebound

Plate motion (Credit: Pearson Prentice Hall, Inc.)

Additional knowledge contributing to mantle flow models:
I Location and geometry of plates, plate boundaries, and subducting

slabs (from seismicity)
I Images of present-day Earth structure (by correlating seismic wave

speed with temperature)
I Rock rheology extrapolated from laboratory experiments
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Want: Inversion to constrain parameters of mantle models
Constant rheological parameters affecting viscosity and nonlinearity:
I Scaling factor of the upper mantle viscosity (down to ∼660 km depth)
I Stress exponent controlling severity of strain rate weakening
I Yield strength governing plastic yielding phenomena

Spatially varying parameters modeling geometry of plate boundaries:
I Coupling strength / energy dissipation between plates

(Credit: Alisic)
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Summary
Focus in today’s talk:
I Our challenge: nonlinear applications

modelled by optimization problems with
singularities in the Hessian due to a
L1-norm type term in the objective.

I Hessian exhibits a null space upon
linearization with Newton’s method that
is problematic for convergence.

I Applications include inverse problems
with total variation regularization as well
as viscoplastic/multi-viscosity flows like
Earth’s mantle convection.

I We analyze issues with the standard
Newton linearization theoretically and
through numerical experiments.

I We propose an improved linearization
based on a perturbation of an otherwise
implicitly assumed equality constraint.

I We achieve robust and fast Newton
convergence largely independent of the
discretization.

Global-scale mantle solver:
I Hybrid spectral–geometric–algebraic multigrid

(builds on p4est library; extended by a
coarsening correction to enable coarsening
across core boundaries). [Rudi, Malossi, Isaac,
et al., 2015]

I Weighted BFBT preconditioner for the for
the Schur complement; scalable HMG-based
BFBT algorithms, heterogeneity-robust
weighting of BFBT and theoretical
foundation. [Rudi, Stadler, Ghattas, 2017]

I Inexact Newton–Krylov with nonlinear
preconditioning and grid continuation for
highly nonlinear mantle rheology.

I Optimal algorithmic performance w.r.t. mesh
refinement; nearly optimal w.r.t. higher
discretization order.

I Parallel scalability of solvers to 1.6M cores
(collaboration with IBM Research, Zurich).
[Rudi, Malossi, Isaac, et al., 2015]
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