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Driving scientific problem & computational challenges
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Incompressible Stokes flow with heterogeneous viscosity

Commonly occurring problem in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes
equations with power-law rheology yields spatially-varying and highly
heterogeneous viscosity j after linearization.

Nonlinear incompressible Stokes PDE:

=V [p(u,z) (Vu+ VUT)} +Vp=f viscosity u, RHS forcing f

—V-u=0 seek: velocity u, pressure p

Linearization, then discretization with inf-sub stable finite elements yields:
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me with upper triangular block preconditioning:
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Severe challenges for parallel scalable PDE solvers

...arising, e.g., in Earth's mantle convection:

>

Severe nonlinearity, heterogeneity, and
anisotropy of the Earth’s rheology

Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ~5km)

Wide range of spatial scales and highly
localized features, e.g., plate boundaries of
size O(1km) influence plate motion at
continental scales of (1000 km)

Adaptive mesh refinement is essential
High-order finite elements Q) x P{isS,
order k > 2, with local mass conservation;
yields a difficult to deal with discontinuous,

modal pressure approximation

Viscosity (colors), surface
velocity at sol. (arrows),
and locally refined mesh.
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w-BFBT and improved robustness of over established state of the art
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L —|

Propose: w-BFBT inverse Schur complement approx.

u} - [f] A;l ~ A;l
P [0] S§'xs':=(BA;'B)!
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B oflo S
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Propose: w-BFBT inverse Schur complement approx.

[A“ BT] [A# BT u] B H Al~ A

B 0 0 S |0 -1 . q—1._ —IRT\-1
p S'~8':=(BA,;'B")

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by e;)

-1

A,D'BT-B'X~0 o min|A,D 'Ble;— BTXejH;1 Vj

= Sglar = (BC‘lBT)_l (BC™'A,D'BT) (BD‘lBT)_l.

Choice of matrices C, D s critical for convergence and robustness.
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Propose: w-BFBT inverse Schur complement approx.

[A“ BT] [A# BT u] B H Al~ A

B 0 0 S |0 -1 . q—1._ —IRT\-1
p S'~8':=(BA,;'B")

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by e;)

-1

A,D'BT-B'X~0 o min|A,D 'Ble;— BTXejH;1 Vj

= Sglar = (BC‘lBT)_l (BC™'A,D'BT) (BD‘lBT)_l.

Choice of matrices C, D s critical for convergence and robustness.

S,rer = (BC,'BT) " (BC,'A,D;'B") (BD,'BT)

where C,, = D, := M,,(\/}1) are responsible for efficacy and robustness.
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Robustness of w-BFBT over established state of the art

T

T

T

I T

600 H

== M, (1/11) — state of the art
=@= w-BFBT — proposed
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Problem difficulty (number of sinkers) —

#iterations with w-BFBT

DR(p) = 10" 10% 108 10 DR(p) = 10" 10 10® 10%
Si-rand 29 31 31 29 S1-rand 20 29 29 30
S8-rand 64 79 93 165 S8-rand 38 40 41 44

S16-rand 85 167 231 891 S16-rand 40 45 47 48

S24-rand 117 286 3279 59083  S24-rand 31 32 39 55

$28-rand 108 499 2472 >10000  S28-rand 20 31 42 60
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HMG: Hybrid spectral-geometric-algebraic multigrid
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG V-cycle

HMG hierarchy

pressure space |discont. modal

spectral cont. nodal
p-coarsening high-order F.E.
geometric trilinear F.E.

h-coarsening decreasing #cores

Igebrai #cores < 1000
oars/small MPl communicator

single core

modal to
nodal proj.

high-order
L2-projection

linear
L2-projection

linear
projection

Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral-geometric coarsening

Re-discretization of PDEs at coarser levels

Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);
sufficiently coarse meshes occupy only subsets of cores

Coarse grid solver: AMG (PETSc's GAMG) invoked on small core counts
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG V-cycle

HMG hierarchy

pressure space |discont. modal

spectral cont. nodal
p-coarsening high-order F.E.
geometric trilinear F.E.

h-coarsening decreasing #cores

Igebrai #cores < 1000
oars/small MPl communicator

single core

modal to
nodal proj.

high-order
L2-projection

linear
L2-projection

linear
projection

High-order L2-projection onto coarser levels;
restriction & interpolation are adjoints of each other in L?-sense

Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized
matrix-free high-order stiffness apply; assembly of high-order diagonal only

Efficacy, i.e. error reduction, of HMG V-cycles is independent of core count

No collective communication needed in spectral-geometric MG cycles
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p4est: Parallel forest-of-octrees AMR library [p4est.org]

Scalable geometric multigrid coarsening due to:
» Forest-of-octree based meshes enable fast refinement/coarsening

» Octrees and space filling curves used for fast neighbor search, mesh

repartitioning, and 2:1 mesh balancing in parallel
@
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Colors depict different processor cores.



“Extreme-Scale Solver for Earth's Mantle” by Johann Rudi

Geometric coarsening: Repartitioning & core-thinning

v

Parallel repartitioning of locally refined meshes for load balancing

v

Core-thinning to avoid excessive communication in multigrid cycle

v

Reduced MPI| communicators containing only non-empty cores

v

Ensure coarsening across core boundaries: Partition families of
octants/elements on same core for next coarsening sweep

coarsen,
2:1 bal. partition
e

P

Colors depict different processor cores, numbers indicate element count on each core.
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Algorithmic scalability for HMG+w-BFBT
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Algorithmic scalability for HMG+w-BFBT (decreasing h)

Discretization parameters to test algorithmic scalability:
> Finite element order k = 2 is fixed (Q), x P¢is¢)
» Vary mesh refinement level ¢

Multigrid parameters for A, and Kq:= BC,'B":

» 1 HMG V-cycle with 3+3 smoothing

#iterations for solving sub-systems A,u = f, Kqp = g, and full Stokes system

¢  u-DOF [x10°] It. A, p-DOF [x10°] It. Kq DOF [x10°] It. Stokes
4 0.11 18 0.02 8 0.12 40
5 0.82 18 013 7 0.95 33
6 6.44 18 1.05 6 7.49 33
7 50.92 18 839 6 59.31 34
8 405.02 18 67.11 6 472.12 34
9 3230.67 18 536.87 6 3767.54 34
10 25807.57 18 4294.97 6 30102.53 34
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Algorithmic scalability for HMG+w-BFBT (increasing k)

Discretization parameters to test algorithmic scalability:
> Vary finite element order k (Qj, x P{is$)
> Mesh refinement level £ =5 is fixed

Multigrid parameters for A, and Kq := BC,'B":
» 1 HMG V-cycle with 343 smoothing

#iterations for solving sub-systems A,u = f, Kqp = g, and full Stokes system

k  u-DOF [x10°] It. A, p-DOF [x10°] It. K4 DOF [x10°] It. Stokes

2 0.82 18 013 7 0.95 33
3 274 20 032 8 3.07 37
4 6.44 20 066 7 7.10 36
5 12,52 23 1.15 12 13.67 43
6 21.56 23 1.84 12 23.40 50
7 34.17 22 2.75 10 36.92 54
8 50.92 22 3.93 10 54.86 67
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Algorithmic scalability of nonlinear solver (decreasing h)

Max level of Finest resolution DOF Newton  Total GMRES

refinement £,.x [m] [x10°] iterations iterations
10 2443 0.96 14 1408
11 1222 2.67 18 1160
12 611 5.58 21 1185
13 305 11.82 21 1368
14 153 36.35 27 1527

» Finite element order fixed at Qy x P{is
> Locally refined mesh with aggressive refinement at plate boundaries

> Multigrid parameters: 1 HMG V-cycle with 343 smoothing
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Parallel scalability and performance for HMG+w-BFBT
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Implementation optimizations for Blue Gene/Q

Before optimizations 10 10
Reduction of blocking MPI 875 1032
. . =} Q
communication 5 E
g 5 1023
{=% =
P . . . . »n Q
Minimization of integer operations Z 3
. §25 10' g
& cache misses = £
L © 0 1002
Optimization of element-local A B CDE F G H
derivatives; SIMD vectorization Optimization phase
OpenMP threading of matrix-free apply loops (e.g. multigrid smoothing,

intergrid projection)
MPI communication reduction, overlapping with computations, OpenMP
threading in intergrid operators

Finite element kernel optimizations (e.g. increase of flop-byte ratio,
consecutive memory access, pipelining)

Low-level optimizations (e.g. boundary condition enforcement, interpolation
of hanging finite element nodes)
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Global mantle convection problem for scalability tests

Discretization parameters to test parallel scalability:

v

Finite element order k = 2 is fixed (Qj x Pi59)

> Vary max mesh refinement /. for weak scalability
> Refinement down to ~75m local resolution

> Resulting mesh has 9 levels of refinement

Multigrid parameters for A, and Kg:

» 1 HMG V-cycle with 3+3 smoothing
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Blue Gene/Q node performance in weak scaling

1 rack 32 racks 64 racks 96 racks
(7.5 TFlops/s) (239 TFlops/s) (445 TFlops/s) (687 TFlops/s)
8.8%
8%
3.7%
3.5%
’II A, Ka HIiB/BT UnStokes Niintergrid I Total solve

1 2 4 8 16 32 64 96
Blue Gene/Q racks

Time & GFlops/s for MatVec and intergrid operators within Stokes solves
> Highly optimized matrix-free MatVecs dominate with ~80% of time

» MatVecs and intergrid times consistent across 1 to 96 racks

GFlops/s per node
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Extreme weak scalability for HMG+w-BFBT on Sequoia

. . . ; ; ;
=== |deal weak scalability

=fli= Solve [DOF/(sec/iter)] 0.98 097

== Setup [DOF/sec] 1.03 1.03
1.03 ;

1011

1010
0.99

0.98

10°

=
w
IS

10%
0.94

107 0.96 |
16,384 32,768 65536 131,072 262,144 524288 1,048,576 1,572,864
Number of cores (~4x10° DOF /core)

Degrees of freedom per unit time

Performed on LLNL's Sequoia (Vulcan used for up to 65,536 cores):
IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes,
each node contains 16 compute cores and 16 GBytes of memory.



“Extreme-Scale Solver for Earth’s Mantle” by Johann Rudi

Extreme strong scalability for HMG+w-BFBT on Sequoia

: : T T T T
=== |deal speedup

=@= Solve 4xOMP16

=)
4>
T

w
N
T

Speedup [baseline sec/sec]
oo
T

1 | | | | | |
16,384 32,768 65536 131,072 262,144 524,288 1,048,576 1,572,864
(505,821) (252,910) (126,455) (63,228) (31,614) (15,807) (7903)  (5269)

Number of cores (DOF /core)

Performed on LLNL's Sequoia (Vulcan used for up to 65,536 cores):
IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes,
each node contains 16 compute cores and 16 GBytes of memory.
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Appendix: Parallel scalability for HMG+w-BFBT on TACC's Lonestar 5
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Multi-sinker problem for scalability tests on Lonestar 5

Discretization parameters to test parallel scalability:
» Finite element order k = 2 is fixed (Q) x P¢is¢)
> Vary mesh refinement level ¢ for weak scalability

Multigrid parameters for A, and Kq:= BC,'B":

» 1 HMG V-cycle with 343 smoothing
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We

1010
10°
10®
107

108

Degrees of freedom per unit time

ak scalability for HMG+w-BFBT on Lonestar 5

: T
=== |deal weak scalability

== Solve [DOF/(sec/iter)]
== Setup [DOF /sec]

0.94

0.97

0.97

|
48 456 3744 29,640
Number of cores (~10° DOF /core)

Performed on TACC's Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
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Strong scalability for HMG+w-BFBT on Lonestar 5

== |deal speedup
512 || =@= Solve 24xOMP1
== Solve 6 x OMP4
== Solve 2x OMP12
| | == Solve 1xOMP24

1.20

[@)]
>

1.00

Speedup [baseline sec/sec]

1 | |
48 456 3744 29,640
(1,235,675) (130,071) (15,842) (2009)

Number of cores (DOF /core)

Performed on TACC's Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
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