
A Model Driven Intelligent Orchestration Approach to Service
Automation in Large Distributed Infrastructures*

Xi Yang
University of Maryland
College Park, Maryland

USA
maxyang@umd.edu

Tom Lehman
University of Maryland
College Park, Maryland

USA
tlehman@umd.edu

Raj Kettimuthu
Argonne National Laboratory

Argonne, Illinois
USA

kettimut@anl.gov

Linda Winkler
Argonne National Laboratory

Argonne, Illinois
USA

winkler@mcs.anl.gov

Eun-Sung Jung
Hongik University

Seoul
South Korea

ejung@hongik.ac.kr

ABSTRACT
Today’s scientific computing applications and workflows operate
on heterogeneous and vastly distributed infrastructures.
Traditional human-in-the-loop service engineering approach met
its insurmountable challenge in dealing with these very complex
and diverse networked systems, including conventional and
software defined networks, compute, storage, clouds and
instruments. Orchestration is the key to integrate and coordinate
the networked multi-services and automate end-to-end
workflows. In this work, we present a model driven intelligent
orchestration approach to this end-to-end automation, which is
built upon a semantic modeling solution that supports the full
stack of service integration, orchestration, abstraction, and intent
and policy representation. We also present the design of a real-
world orchestrator called StackV that is able to accommodate
highly complex application scenarios such as Software Defined
ScienceDMZ (SD-SDMZ) and Hybrid Cloud Inter-Networking
(HCIN) by implementing this approach.

CCS CONCEPTS
• Networks systems → Network Services; Programmable
Networks; Cloud Computing • Architectures → Distributed
architectures

 *Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

AI-Science'18, June 11, 2018, Tempe, AZ, USA © 2018 Association for Computing
Machinery. ACM ISBN 978-1-4503-5862-0/18/06...$15.00
https://doi.org/10.1145/3217197.3217207

KEYWORDS
ACM proceedings, text tagging

ACM Reference format:

X. Yang, T. Lehman, R. Kettimuthu, L. Winkler, E. Jung. AI-Science'18,
June 11, 2018, Tempe, AZ, USA © 2018 Association for Computing
Machinery. ACM ISBN 978-1-4503-5862-0/18/06.
https://doi.org/10.1145/3217197.3217207

1 INTRODUCTION
More and more information technology consumers, including

those for large scientific computing workflows, are looking for
integrated services through single or consolidated channels,
interfaces or portals. The practices of procuring separate
compute, storage and network services and then plumbing in-
house integration are becoming obsolete. This trend has firstly
been manifested by the success of public cloud platforms such as
Amazon AWS, where consumers can buy a wide range of
information services and use them in integrated fashion through
only a few mouse clicks. Fueled by growing interest from a wide
spectrum of service providers, this trend will continue to
proliferate through the entire information technology ecosystem.

One critical part of the ecosystem is the underlying
infrastructures, a.k.a. cyberinfrastructures, which include the
Internet, telecommunication networks, high-performance
computing and storage systems, public and enterprise clouds,
data centers, scientific instruments, etc. Built upon these
infrastructures currently are diverse and heterogeneous
networked multi-services. Both the commercial IT and scientific
research communities have emerging advanced applications that
increasingly revolve around the integration of big data,
computation, and high performance networking. Their highly
complex workflows and demanding performance requirements

AI-Science'18, June 11, 2018, Tempe, AZ, USA X. Yang et al.

pose great challenges for these traditional services. At
University of Maryland/Mid-Atlantic Crossroads (UMD/MAX)
and Argonne National Laboratory (ANL), we were funded by
Department of Energy under the Resource Aware Intelligent
Network Services (RAINS) project to develop a collaborative,
multiservice orchestration system. In this work, the definition of
Orchestration is to provide intelligence to integrate and
automate these networked multi-services into simple, abstract
forms that support a wide range of high demanding science
applications and workflows.

The key to realize this goal is technology that enables flexible,
owner controlled resource descriptions. We refer to this as
Modeling (Description and Abstraction). This is important
because collaborative distributed systems will need to use
compatible methods, semantics, and syntax for resource
description to allow the higher-level orchestration functions to
reason about relationships between resources and services. This
is what will ultimately provide the value added services for
applications workflows.

Two challenges we face in realizing the orchestration goal are
control automation and distributed coordination. Automation in
any complex system requires forming a control loop. In one
direction, control operation results in state changes in the
infrastructures. In the other, control feedback, a.k.a. telemetry, is
desired to provide state awareness back to the orchestration
layer. Unified resource modeling can provide semantics in both
directions. With a proper level of abstraction, the orchestration
intelligence can learn dynamic resource and service states and
create new services with reduced chance of conflict and better
efficiency. The same modeling semantics can also serve to
synchronize the orchestration intent to resource and service
states in the underlying infrastructures and thus close the
control loop. We call this a model driven intelligent
orchestration approach. Applying this approach helps solve the
challenge of distributed coordination as well. When all resource
owners use unified, extensible models to describe their resources
and services and make state changes, the interface can be greatly
simplified. We then effectively create a thin-API to introduce
universal programmability to all the parties. Any parties can
engage in free-form provider-consumer relationships for any As-
a-Service transactions and thus decentralize the service
integration, orchestration and instantiation processes. In a sense,
“modeling is the starting point for everything”.

A full-stack model driven orchestration approach provides a
general solution for a variety of use cases. One use case is
Software Defined Science DMZ (SD-SDMZ). UMD/MAX
developed the SD-SDMZ as a pilot for providing flexible edge
services that included traditional data transfer functions. Built
upon technologies similar to those used in modern data centers,
this allows scientific computing users to dynamically instantiate
resources such as Data Transfer Nodes (DTN), networked
storage, Globus End Points and fast data paths in dedicated
virtual network enclosures. SD-SDMZ offers an “As-a-Service”
model in a “cloudified” multi-tenancy environment that can be
shared by a well networked region instead of by a single campus.
Another use case is Hybrid Cloud Inter-Networking (HCIN)

which bridges multi-provider cloud resources including cloud
direct connects, hypervisor bypass interfaces, on-premise
compute clusters and software defined local and inter-cloud
networks. The HCIN services co-allocate these resources and
bring the public and private clouds and networks together to
provide on-demand high-performance hybrid cloud experience
to end users. The use cases are many, including but not limited
to end-to-end networking, data movement and storage co-
scheduling, scientific HPC workflow, and multi-cloud
orchestration. The scope of resources ranges from commodity
network, compute and storage infrastructures, to on-premise
facilities, to purpose-built instruments, to datasets and
applications, and to custom DevOps procedures. Generalizability
of this approach comes from the full-stack modeling that uses
consistent solution for resource and service description, for
service abstraction and intent representation and for
orchestration intelligence in between.
We implemented a full-stack model driven orchestrator called
StackV for real-world service operations. The modeling solution
in StackV is based on Semantic Web standards, namely W3C
Resource Description Framework (RDF) [1] and Web Ontology
Language (OWL) [2]. Southbound and northbound APIs and
orchestration intelligence are designed around a common set of
RDF/OWL ontologies. StackV uses the model data in its native
data structure without having to bind to fixed schema. Service
orchestration and instantiation uses hot-pluggable driver
modules, two-phase commit distributed transactions and model
based dynamic computation workflows. These make the system
highly extensible and scalable. In this work, we will present
some architectural details and walk through the design with
practical use cases.

2 MODELING NETWORKED RESOURCES
AND SERVICES

2.1 Multi-Resource Markup Language (MRML)
Through the RAINS project we developed the Multi-Resource

Markup Language (MRML) [3]. MRML is a network centric
multi-resource service modeling solution, extended from the
Network Markup Language (NML) [4]. Networks are the central
components of information infrastructures. Network topological
structures are well suited for graph based modeling, as
manifested from day one of network research. NML is a standard
developed by the Open Grid Forum (OGF) for describing
network resources and services. It supports both XML and
RDF/OWL representations. In RDF/OWL form, it introduces an
NML ontology that defines concepts such as Topology, Node,
Port, Link, SwitchingService and AdaptationService as well as
the relationships for interconnecting these resources and
services. Our work through an earlier DOE project extended
NML for multi-layer networks [5]. Aiming at describing
heterogeneous cyberinfrastructures, MRML defines an extensible
ontology for network, compute, storage and interconnects by
further extending the NML.

A Model Driven Intelligent Orchestration Approach to Service
Automation in Large Distributed Infrastructures

AI-Science'18, June 11, 2018, Tempe, AZ, USA

Compared to other modeling languages such as YANG [6],
MRML has some unique features. YANG is specialized in
network configuration and state manipulation. It is often used as
a southbound data modeling solution paired with the NETCONF
protocol [7]. In comparison, MRML is a protocol-neutral full-
stack solution, meaning its models can be used for both
southbound and northbound as well as for internal reasoning
and computation.

2.2 Service-Oriented Modeling Stack

In practice, we use MRML for resource and service management,
instantiation, integration, orchestration, abstraction, intent and
policy, all the way from bottom up to the very top of the stack.
We use MRML to carry semantics at every layer that provides
programmability through an API. Figure 1 illustrates the service-
oriented modeling stack in contingency with function layers of a
real-world orchestrator StackV that we will further describe in
later sections. The Service Integration layer interacts with
different sub-systems, namely service providers and domains,
through Driver API, to pull their resource models and push
model change “deltas”. Through this layer, sub-system models
are integrated into a service integration model, a.k.a. system
model, for the entire infrastructure and exposed as “full view” to
service Integration Management API. It also conducts two-phase
commit distributed transactions to decompose and push a system
model “delta” to related sub-systems. At the top, the Service
Abstraction layer interprets service intent as presented by an
application into a service abstraction model using the MRML
ontologies. For a complex service, the Service Abstraction layer
will work with the Service Orchestration layer to compile and
compute the service abstraction into detailed system model delta
and push down to the Service Integration layer for instantiation.
The API also provides methods to revert, modify and verify a
service through its life cycle. These are all model driven,
automated and programmability-ready to integrate into
applications and DevOps procedures.

2.3 Service Integration Modeling
The MRML ontologies and future extensions are meant to

describe arbitrary information infrastructures and services.
Currently we use them to model multi-layer local and wide area
networks, SDN, public and private clouds, attached network
fabric, HPC clusters and parallel storage systems. Models of
these diverse subsystems are generated in real time by pluggable
modules and assembled into integrated model for the entire
infrastructure in the Service Integration layer.

As an example UMD/MAX is a regional optical network with
multi-100G capabilities at Layers 1, 2 and 3. This includes a 10G
DirectConnect to the Amazon AWS US East Region. There is also
an on-premise OpenStack cloud, which has compute nodes
equipped with Single Root I/O Virtualization (SR-IOV) interfaces
for hypervisor bypass. We are able to create dedicated layer-2
paths between the public and private clouds for up to 10Gbps. As
illustrated in Figure 2, we use StackV to integrate these
subsystems using three pluggable drivers: AWS Driver,
OpenStack Driver and Generic SDN Driver. Through standard
RDF/OWL rendering, the MRML models pulled from the three
drivers are combined into a complete MRML model, which
provides all the details of resources and services for the entire
infrastructure.

Here we only describe at high level the MRML model pulled
from the Generic SDN Driver to illustrate the general modeling
solution. We model Layer-2 connectivity of the UMD/MAX
network as one Topology. The topology model consists of Node
and BidirectionalPort instances. All border ports are included in
a single SwitchingService, which provides SwitchingSubnet
instances to represent dynamic VLAN circuits. Edge ports
peering with AWS DirectConnect and OpenStack SR-IOV
interfaces have the connectivity described through a property
isAlias. This allows the Service Integration layer to connect the
three subsystem models into a whole. In this work we have used
several ontology elements, whose meanings are straightforward
by names. Detailed ontology definitions can be found in [3] and
[4].

Figure 1: Service-oriented modeling stack illustrated by
StackV system function layers

Figure 2: Service integration modeling for cloud inter-
networking

AI-Science'18, June 11, 2018, Tempe, AZ, USA X. Yang et al.

2.4 Service Abstraction Modeling
We use the same modeling to describe the services for end users
and applications, only that the description is about abstract
resources that reflect high level intent. An intent represents
users definition of a service instance that is customized to
support a specific set of application functions for a specific
service life cycle. This users definition is in a domain-specific,
human-readable, format and simplified language, which may
vary in syntax and semantic form. These different forms can
then be translated into a unified abstraction using MRML. The
MRML ontologies are well designed to accommodate abstract,
virtualized and hierarchical resources and services which can
apply to any system layers. This is why we call it a “full-stack”
modeling solution. As part of the modeling solution, we
developed a Simple Policy Annotation (SPA) ontology [8] to
describe the user intent for service orchestration policies, such as
resource inter-dependency, workflow order and service chaining.
SPA is a component ontology of MRML, and is only used to
facilitate orchestration computation at abstract level. For
example, it can define a policy that applies to a virtual server,
with constraints that specify where and how to schedule this
server during the orchestration.

On top of the internetworked cloud infrastructures, we create
a virtual inter-cloud network that consists of AWS Virtual
Private Cloud (VPC), OpenStack Virtual Tenant Network (VTN)
and dedicated VLAN connection across the SDN in between. The
virtualization is illustrated as the connected red bubbles in
Figure 2. This virtual inter-cloud network “intent” is represented
as an MRML Topology in Service Abstraction modeling. The
Topology consists of two sub-level Topology instances one for
VPC and the other for VTN, each having its own Node,
BidirectionalPort, SwitchingService, SwitchingSubnet,
RoutingService and RoutingTable instances and other elements,
all in abstract forms, as none is available in the detailed MRML
model at the Service Integration layer. The SPA statements are
added to this abstraction model to describe the following intent
policies: (a) Allocate VPC and VTN with contained compute,
storage and network resources, (b) Compute a VLAN path
between AWS DirectConnect and OpenStack cluster switch, (c)
Stitch VPC gateway to a DirectConnect VLAN, (d) Stitch virtual
machine SR-IOV interfaces to OpenStack cluster switch VLAN,
and (e) The VPC gateway, SR-IOV interfaces and VLAN(s) in c
and d depend on the results of a and b. Based on the MRML and
SPA ontologies the service abstraction modeling thus describes
the service intent in standard RDF/OWL format, which is
consistent to other layers in the stack.

3 STACKV: MODEL DRIVEN SERVICE
ORCHESTRATION

3.1 Service Orchestration Workflow
StackV is a general-purpose orchestrator for networked multi-
services and is implemented based on the full-stack model driven
intelligent orchestration approach. The software is written in
Enterprise Java and deployed as a suite of Web Services. It

provides APIs at all the model driven function layers as
previously illustrated in Figure 1. Figure 3 shows the service
orchestration workflow of StackV. From very top of the stack,
applications communicate to the orchestrator with highly
abstract service request, namely Intent. The StackV provides
both GUI based Web Portal and REST API to help applications
describe the intent. This is called “Service Model Description and
Abstraction”. Outcome of the procedure is a formal MRML
model that consists of abstract resources annotated with SPA
policy statements. The abstract model data are then fed to a
Dynamic Compile procedure and compiled into a model based
computation workflow. A computation workflow consists of a
variety of Model Computation Elements (MCE) as intelligence
functions assembled into an execution tree. Each MCE uses
system model data, service model data and policy data as input
and accomplishes a specific function such as resource placement
and connection computation. The output will be more detailed
service model data, which could be used as input for another
MCE. When the computation workflow finishes successfully, a
System Model Delta will be created that provides detailed model
statements about what need to change in the underlying
infrastructures to satisfy the intent.

3.2 Application Intent and Policy
In StackV the Intent API is responsible for interpreting
application intent and policy into service abstraction model.
StackV front end provides both web portal and REST API to
support extensible intent as a service. For example, it supports
the intent of layer-2 VLAN connection through a Dynamic
Network Connection (DNC) service, and virtual cloud with
gateway to external layer-2 stitching point through a Virtual
Cloud Network (VCN) service that consists of on-demand
networked storage and DTN nodes. Both are application
scenarios of the SD-SDMZ use case.
Using VCN as an example, an application intent specifies the
cloud provider identifier, subnets, placement of VMs in subnets,
attached Internet and private gateways, custom routes, and
optionally external layer-2 stitching port. The intent is firstly
translated into abstract resource statements based on the MRML
modeling. Then the SPA based policy statements are added to
augment the service abstraction model. The resulting abstraction
model typically consists of Policy Action, Policy Data and Policy
Dependency statements. In the VCN service abstraction, policy
actions include virtual cloud creation, VM placement, storage
allocation and mount, Globus end point installation, dedicated

Figure 3: StackV service orchestration workflow

A Model Driven Intelligent Orchestration Approach to Service
Automation in Large Distributed Infrastructures

AI-Science'18, June 11, 2018, Tempe, AZ, USA

layer-2 network connection and virtual cloud to external
network stitching. The policy data include the user data for
resource dimensioning such as number of subnets, VMs, and
amount of storage, and the intermediate variables for output of
one policy action into another policy action. For example, the
VM placement action will import policy data from the virtual
cloud creation action to learn available subnets for the
placement. The policy dependency statements define how an
abstract resource depends on the policy actions and how policy
actions depend on each other.

3.3 Model Based Computation
Based on the modeling stack described in Section II.B., the
StackV service orchestration uses model based computation to
transform a service abstraction model into a service integration
model, Only the latter can be used to drive actual resource
(de)allocation and states change. StackV leverages the open
source Apache Jena [9] libraries to handle all its model data in
native RDF/OWL format. The benefits of model based
computation include eliminating conversion between interface,
internal and persistence data structures, leveraging standard
tools for data query, navigation, transformation and reasoning,
and maintaining consistent data semantics through all the
computation modules.
Model Computation Element (MCE) is the basic computation
module. The input and output of an MCE are both model data
based on RDF/OWL, MRML and SPA ontologies. In the compiled
computation execution workflow, each MCE instance computes
for a specific purpose. We still use VCN as an example. A virtual
cloud creation MCE takes in the initial service abstraction model
and resource dimensioning policy data. It maps the abstract
virtual cloud topology under a specific cloud provider topology
found in the full system model from the Service Integration
layer. Then the MCE creates the model statements for adding a
virtual cloud, contained subnets, routes and gateways to an
updated service abstraction model and exports it together with
some intermediate policy data. Depending MCEs such as the VM
placement and layer-2 connection then use this new service
abstraction model (more detailed than the original one) and
policy data as input to perform their own computation. StackV
has implemented sophisticated logic to concatenate MCEs and
merge computation results. The basic idea of this technique is to
use SPARQL [11] queries to “shape” the output of a upper stream
MCE into custom JSON format and use JSONPath [12] queries to
extract information and “fit” to the input of downstream MCEs.
Success in finishing the computation workflow means StackV
has resolved all model abstractions and policy annotations in the
final product, and has turned an application intent into a System
Model Delta. This “delta” (as shown in Figure 1) can be pushed
down to the Service Integration layer for instantiation.

4 APPLICATION SCENARIOS CASE STUDY
The StackV system provides a thin-API that is syntax simple

and semantics rich for service orchestration. Users can use either
the StackV front end or their own code to interpret service intent
into service abstraction model in uniform format. This gives
them the flexibility to represent arbitrary service requests. In
practice, we created a few abstraction templates for common
service requests so users can quickly sketch out a request and
then extend, tailor or change to any combination of resources,
connectivity, and dependencies they desire. The orchestration
layer is very general (only limited by the types of available
MCEs) in handling the variations. In this work, we provide
detailed case study of application scenarios for two use cases,
SD-SDMZ and HCIN, that we have practiced in real world
operations. Compared to the typically manual, time consuming
operations for these applications scenarios, StackV can have
services ready in a few minutes while providing users with
better awareness of both the services and supporting
infrastructures.

4.1 Software Defined Science DMZ (SD-SDMZ)
The traditional Science DMZ architecture is based on bare

metal servers providing a fixed set of services typically focused
on data movement between HPC facilities. This Science DMZ
concept has been proven a well thought out architecture that has
greatly facilitated data movement services at a large number of
university campuses and Department of Energy laboratories.
However, we identified a class of users, and associated services,
where this fixed architecture and pre-defined service model was
not as flexible as desired for all use cases. As a result, the
Software Defined Science DMZ (SD-SDMZ) concept was
developed. The SD-SDMZ is a re-imagining of the traditional
Science DMZ based on virtualization and cloud technologies.
Built upon technologies similar to those used in modern data
centers, the SD-SDMZ provides scalable, multi-tenancy
environment, where each user or user group can allocate
dedicated resources and use the resources in an isolated,
independent and elastic fashion. In addition external resources
such as direct connections to public clouds along with research
and education network services from Internet2 and ESnet are
integrated. The result is an edge facility where users can obtain
traditional Science DMZ data transfer service, and/or have
specialized topologies built which integrate on-premise cloud
based compute/storage, and external connections to public
clouds, local HPC, or other remote destinations. Embedding this
resource in the University of Maryland (UMD) Mid-Atlantic
Crossroads (MAX) regional network allows the SD-SDMZ to
leverage rich connectivity to advance cyberinfrastructure to
provide new and flexible services.

AI-Science'18, June 11, 2018, Tempe, AZ, USA X. Yang et al.

UMD/MAX has deployed a ScienceDMZ for regional network
connectors to utilize. Motivated by a desire to have a flexible and
extensible infrastructure, we based this upon a SDN and Cloud
technologies. This includes OpenStack [10] driven Cisco Unified
Computing System (UCS) clusters, Ceph [13] parallel filesystem,
SDN enabled network elements, and direct integration with local
HPC high performance filesystem. This UMD ScienceDMZ
provides all of the standard ScienceDMZ services including
DTNs, Globus Endpoints, integration with local HPC, high-speed
layer3/layer2 flow termination, and a security perimeter. It has
the capability to terminate 100G layer2/layer3 flows from
Interent2 or ESnet to research project specific virtual machine
topologies with high speed SR-IOV [14] interfaces to storage and
external network locations. By leveraging the StackV intelligent
orchestration solution, we have transformed this into an SD-
SDMZ infrastructure as depicted in Figure 4. Any UMD/MAX
user within our regional network can create dedicated virtual
SDMZ services on demand through the StackV self-service
portal.

As a specific service instance example, we have created a
DTN cluster with five VM based DTNs for UMD campus
researchers. Each DTN node has 16 cores, 32GB memory, a
management network interface and two 10G SR-IOV interfaces.
One SR-IOV interface faces external 100G network and binds to
auto-registered Globus endpoint. The other faces internal Ceph
storage network that mounts CephFS. With a predefined service
profile, this DTN cluster with 5x10G network capability and
parallel networked file system was created in a few minutes. We
automate Kerberos based authentication on all DTN nodes, tied

with the Globus authentication so that authorized users can
access the storage and data transfer services instantaneously.
We have also predefined “scale-out” service profiles that help
create additional DTN instances, as partly illustrated in Figure 5.

These profiles will have SR-IOV interfaces sharing network
connectivity with the existing cluster. Whenever the five-node
cluster gets too crowded, we can instantiate new service
instances that add DTNs nodes to linearly scale the cluster until
reach the limit of external network and internal storage.

4.2 Hybrid Cloud Inter-Networking (HCIN)
Cloud inter-networking in most cases is used to connect a public
cloud with a private cloud to form application specific
virtualization, namely hybrid cloud service. This requires co-
allocation of cloud resources at both clouds and network
resources in between to stitch them together. This is complicated
by the diverse set of services and technologies, including
Amazon Web Services (AWS) DirectConnect, wide and local
area networks, cloud network fabric and SR-IOV interfaces. In
Section II.C, we described a HCIN infrastructure we operate at
UMD/MAX. As a real-world application, we have provided
domain scientists a HCIN hybrid cloud solution. With the model
driven orchestration system, we are moving from manual
provisioning and stitching of various resources to fully
automated services. In one application scenario, a scientist
wanted to run large-scale simulations using Hadoop cluster.
They started with a few high-end local nodes for prototyping but
desired many more in the hybrid cloud for production work
loads. A HCIN hybrid cloud service with high performance
compute, storage and network resources are ideal for them to
achieve the elasticity around prototyping and production cycles.
Figure 5 shows a diagram of the abstraction model we composed
based on their intent and sent to the service orchestration layer

Figure 4: StackV backed SD-SDMZ at UMD/MAX
Figure 5: A “scale-out” DTN service profile in StackV
portal that serves the UMD/MAX SD-SDMZ

A Model Driven Intelligent Orchestration Approach to Service
Automation in Large Distributed Infrastructures

AI-Science'18, June 11, 2018, Tempe, AZ, USA

for compile and execution. In this example, the execution order
of MCEs is below:

1. Virtual_Cloud_Network MCEs compute model statements
for adding AWS and OpenStack virtual networks, subnets,
gateways and routes.

2. VM_Placement MCEs add statements to place VMs into
specific AWS subnets or to OpenStack subnets and hosts.

3. L2_Path_Computation MCE computes layer2 path and add
statements for all the VLANs on the switches,
DirectConnect and UCS fabric between AWS VPC and
OpenStack hosts from 1 and 2.

4. SRIOV_Stitching uses the results of 2 and 3 to add model
statements for OpenStack VM SR-IOV interfaces and for
their connectivity to layer2 VLAN path.

5. In parallel to 4, DirectConnect_Stitching uses the results of
2 and 3 to to add statements for AWS VPC to attach to a
DirectConnect VLAN and then to the layer2 path.

6. NFV_Quagga_BGP MCE adds model statements for
deploying Quagga [15] based virtual router on an
OpenStack VM Linux using the results of 4 and 5.

7. Networked_Block_Storage MCE adds model statements for
creating Ceph [13] Block Devices (RBD) and attaching and
mounting to designated VMs with traffic routed to SR-IOV
interfaces. This depends on 2, 4 and 6.

In the application scenario illustrated in Figure 6, an OpenStack
VM is allocated as the master Hadoop node and all other nodes
in the OpenStack and AWS clouds are slave nodes. The master
VM also serves as the virtual router to bring together AWS and
OpenStack VMs from separate networks through BGP. This
creates a dedicated, secure virtual infrastructure contained by
layer-2/layer-3 isolation. Between the compute and storage
servers are SR-IOV, Quality of Service (QoS) enforced 10G/100G
networks and AWS DirectConnect. This provides guaranteed
high bandwidth and low latency that facilitate deterministic I/O
performance. From users and applications perspective, these
bring total transparency and on-premise experience, as

consistent to what they typically have in local high-performance
clusters.

4.3 Service Topology for Data Transfer
As an example orchestrated service, the SD-SDMZ DTN and
HCIN functions can be combined to instantiate a service
topology focused on data transfer. The result can be a custom
configuration of DTNs, storage system connections, and public
cloud resource integration over direct network paths. Standard
data movement systems, such as Globus [16] can then be utilized
for data transfers. Figure 7 depicts an example of such a service
topology. These types of topologies could be built for dedicated
use by a single user. In this mode of operation, SD-SDMZ
infrastructure resources would be released for others after work
is complete. In another mode of operation, this topology may be
run by the facility operators and made available on a more
general use basis. For this case, the orchestration functions
would be utilized for dynamic scaling of service resources based
on overall facility load and expected activity.

5 CONCLUSIONS
In this work we presented a model driven intelligent

orchestration approach to service automation for large
distributed infrastructures. This approach provides a viable path
to building general purpose service orchestrators on top of
today’s increasingly complex and diverse networked systems.
We leveraged the Semantic Web standards and developed the
Multi-Resource Markup Language and Simple Policy Annotation
to provide a formal modeling solution. This modeling solution is
extensible and capable of integrating a wide spectrum of
resources and services from many service providers and network
domains. Based on the modeling foundation, we have developed
an intelligent orchestration solution that uses pluggable Model
Computation Elements (MCE) to construct flexible intelligence
workflows that can solve a large set of end-to-end computation,
co-scheduling and automation problems, and can be extended to
handle a lot more.

This approach uses the same modeling solution for a full
stack of service functions including intent interpretation, service
abstraction, service orchestration, computation and integration.
This means high-level application intent can be translated into
low-level resource state changes with consistent semantic
representation and rendering through all the function layers. At
the same time, applications gain awareness of low-level services
and infrastructures bottom up via the same modeling stack. The
model based telemetry data can be fed into the control
intelligence and operation analytics. This completes the control-
feedback loop and makes continuous automation and
optimization possible. We believe this represents a promising
direction for future networked multi-services management and
operation.

Figure 6: An example HCIN hybrid cloud service intent
(top) and abstraction model with orchestration workflow
annotations (bottom: the red numbers correspond to
execution order of MCEs).

AI-Science'18, June 11, 2018, Tempe, AZ, USA X. Yang et al.

In this work we also presented our full-stack model driven
orchestrator called StackV. We walked through architectural
details of its service orchestration workflow, application intent
and policy handling and model based computation processes.
Through case study of SD-SDMZ and HCIN application
scenarios, we demonstrated that real-world implementation of
the model driven intelligent orchestration approach is not only
possible but also brings practical benefits to our daily operations.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. DOE Office of
Science under award numbers DE-SC0010716 and DEAC02-
06CH11357, entitled “Resource Aware Intelligent Network
Services (RAINS)”, and by U.S. National Science Foundation
under award number 1659356, entitled “CC* Integration:
Regional Embedded Cloud for As-a-Service Transformation
(RECAST)”.

REFERENCES
[1] World Wide Web Consortium, "Resource Description Framework
(RDF)", W3C Recommendation. Available at: http://www.w3.org/RDF/.
[2] World Wide Web Consortium, “Web Ontology Language (OWL)”,
W3C Recommendation. Available at: www.w3.org/2004/OWL/.
[3] RAINS Project, “The Multi-Resource Markup Language (MRML)
Ontology - Extension of NML”, Available at: https://github.com/RAINS-
Project/nml-mrs-model/blob/master/schema/rdf-owl/nml-mrs-ext-v2.owl
[4] J. van der Ham, F. Dijkstra, R. Lapacz, J. Zurawski, “Network Markup
Language Base Schema version 1”, OGF GFD-R-P.206, May 2013.
[5] T. Lehman, X. Yang, N. Ghani, et al., “Multilayer Networks: An
Architecture Framework,” IEEE Communications Magazine, 49-5, May
2011.

[6] Internet Engineering Task Force, “YANG - A Data Modeling
Language for the Network Configuration Protocol (NETCONF)”, IETF
RFC 6241, October 2010.
[7] Internet Engineering Task Force, “Network Configuration Protocol
(NETCONF)”, IETF RFC 6020, June 2011.
[8] RAINS Project, “The Multi-Resource Service (MRS) Simple Policy
Annotation (SPA) Ontology”, Available at: https://github.com/RAINS-
Project/nml-mrs-model/blob/master/schema/rdf-owl/mrs-spa-v1.owl.
[9] Apache Software Foundation, “Apache Jena: A free and open source
Java framework for building Semantic Web and Linked Data
applications”, Available at https://jena.apache.org.
[10] OpenStack, “OpenStack Open Source Cloud Computing Software,”
Avaialbe at: http://www.openstack.org/software/
[11] SPARQL Query Language for RDF, https://www.w3.org/TR/rdf-
sparql-query/
[12] JSONPath - XPath for JSON, http://goessner.net/articles/JsonPath/
[13] S. Weil, S. Brandt, E. Miller et al., "Ceph: A Scalable, High-
Performance Distributed File System", in OSDI, pp. 307-320, 2006.
[14] Intel Corp. whitepaper, “PCI-SIG SR-IOV Primer: An Introduction to
SR-IOV Technology,” http://www.intel.com/content/www/us/en/pci-
express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
[15] Quagga Routing Software Suite, Available at:
http://www.quagga.net.
[16] Globus, Research Data Management Services,
http://www.globus.org

Figure 7: Example Service Topology with focus on Data Movement

