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ABSTRACT 
Today’s scientific computing applications and workflows operate 
on heterogeneous and vastly distributed infrastructures. 
Traditional human-in-the-loop service engineering approach met 
its insurmountable challenge in dealing with these very complex 
and diverse networked systems, including conventional and 
software defined networks, compute, storage, clouds and 
instruments. Orchestration is the key to integrate and coordinate 
the networked multi-services and automate end-to-end 
workflows. In this work, we present a model driven intelligent 
orchestration approach to this end-to-end automation, which is 
built upon a semantic modeling solution that supports the full 
stack of service integration, orchestration, abstraction, and intent 
and policy representation. We also present the design of a real-
world orchestrator called StackV that is able to accommodate 
highly complex application scenarios such as Software Defined 
ScienceDMZ (SD-SDMZ) and Hybrid Cloud Inter-Networking 
(HCIN) by implementing this approach.  
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1 INTRODUCTION 
More and more information technology consumers, including 

those for large scientific computing workflows, are looking for 
integrated services through single or consolidated channels, 
interfaces or portals. The practices of procuring separate 
compute, storage and network services and then plumbing in-
house integration are becoming obsolete. This trend has firstly 
been manifested by the success of public cloud platforms such as 
Amazon AWS, where consumers can buy a wide range of 
information services and use them in integrated fashion through 
only a few mouse clicks. Fueled by growing interest from a wide 
spectrum of service providers, this trend will continue to 
proliferate through the entire information technology ecosystem.   

One critical part of the ecosystem is the underlying 
infrastructures, a.k.a. cyberinfrastructures, which include the 
Internet, telecommunication networks, high-performance 
computing and storage systems, public and enterprise clouds, 
data centers, scientific instruments, etc. Built upon these 
infrastructures currently are diverse and heterogeneous 
networked multi-services. Both the commercial IT and scientific 
research communities have emerging advanced applications that 
increasingly revolve around the integration of big data, 
computation, and high performance networking. Their highly 
complex workflows and demanding performance requirements 
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pose great challenges for these traditional services.  At 
University of Maryland/Mid-Atlantic Crossroads (UMD/MAX) 
and Argonne National Laboratory (ANL), we were funded by 
Department of Energy under the Resource Aware Intelligent 
Network Services (RAINS) project to develop a collaborative, 
multiservice orchestration system. In this work, the definition of 
Orchestration is to provide intelligence to integrate and 
automate these networked multi-services into simple, abstract 
forms that support a wide range of high demanding science 
applications and workflows. 

The key to realize this goal is technology that enables flexible, 
owner controlled resource descriptions.  We refer to this as 
Modeling (Description and Abstraction).  This is important 
because collaborative distributed systems will need to use 
compatible methods, semantics, and syntax for resource 
description to allow the higher-level orchestration functions to 
reason about relationships between resources and services.  This 
is what will ultimately provide the value added services for 
applications workflows. 

Two challenges we face in realizing the orchestration goal are 
control automation and distributed coordination. Automation in 
any complex system requires forming a control loop. In one 
direction, control operation results in state changes in the 
infrastructures. In the other, control feedback, a.k.a. telemetry, is 
desired to provide state awareness back to the orchestration 
layer. Unified resource modeling can provide semantics in both 
directions. With a proper level of abstraction, the orchestration 
intelligence can learn dynamic resource and service states and 
create new services with reduced chance of conflict and better 
efficiency. The same modeling semantics can also serve to 
synchronize the orchestration intent to resource and service 
states in the underlying infrastructures and thus close the 
control loop. We call this a model driven intelligent 
orchestration approach. Applying this approach helps solve the 
challenge of distributed coordination as well. When all resource 
owners use unified, extensible models to describe their resources 
and services and make state changes, the interface can be greatly 
simplified. We then effectively create a thin-API to introduce 
universal programmability to all the parties. Any parties can 
engage in free-form provider-consumer relationships for any As-
a-Service transactions and thus decentralize the service 
integration, orchestration and instantiation processes. In a sense, 
“modeling is the starting point for everything”. 

A full-stack model driven orchestration approach provides a 
general solution for a variety of use cases. One use case is 
Software Defined Science DMZ (SD-SDMZ). UMD/MAX 
developed the SD-SDMZ as a pilot for providing flexible edge 
services that included traditional data transfer functions. Built 
upon technologies similar to those used in modern data centers, 
this allows scientific computing users to dynamically instantiate 
resources such as Data Transfer Nodes (DTN), networked 
storage, Globus End Points and fast data paths in dedicated 
virtual network enclosures. SD-SDMZ offers an “As-a-Service” 
model in a “cloudified” multi-tenancy environment that can be 
shared by a well networked region instead of by a single campus. 
Another use case is Hybrid Cloud Inter-Networking (HCIN) 

which bridges multi-provider cloud resources including cloud 
direct connects, hypervisor bypass interfaces, on-premise 
compute clusters and software defined local and inter-cloud 
networks. The HCIN services co-allocate these resources and 
bring the public and private clouds and networks together to 
provide on-demand high-performance hybrid cloud experience 
to end users. The use cases are many, including but not limited 
to end-to-end networking, data movement and storage co-
scheduling, scientific HPC workflow, and multi-cloud 
orchestration. The scope of resources ranges from commodity 
network, compute and storage infrastructures, to on-premise 
facilities, to purpose-built instruments, to datasets and 
applications, and to custom DevOps procedures. Generalizability 
of this approach comes from the full-stack modeling that uses 
consistent solution for resource and service description, for 
service abstraction and intent representation and for 
orchestration intelligence in between.  
We implemented a full-stack model driven orchestrator called 
StackV for real-world service operations. The modeling solution 
in StackV is based on Semantic Web standards, namely W3C 
Resource Description Framework (RDF) [1] and Web Ontology 
Language (OWL) [2]. Southbound and northbound APIs and 
orchestration intelligence are designed around a common set of 
RDF/OWL ontologies. StackV uses the model data in its native 
data structure without having to bind to fixed schema. Service 
orchestration and instantiation uses hot-pluggable driver 
modules, two-phase commit distributed transactions and model 
based dynamic computation workflows. These make the system 
highly extensible and scalable. In this work, we will present 
some architectural details and walk through the design with 
practical use cases. 

2  MODELING NETWORKED RESOURCES 
AND SERVICES 

2.1 Multi-Resource Markup Language (MRML) 
Through the RAINS project we developed the Multi-Resource 

Markup Language (MRML) [3]. MRML is a network centric 
multi-resource service modeling solution, extended from the 
Network Markup Language (NML) [4]. Networks are the central 
components of information infrastructures. Network topological 
structures are well suited for graph based modeling, as 
manifested from day one of network research. NML is a standard 
developed by the Open Grid Forum (OGF) for describing 
network resources and services. It supports both XML and 
RDF/OWL representations.  In RDF/OWL form, it introduces an 
NML ontology that defines concepts such as Topology, Node, 
Port, Link, SwitchingService and AdaptationService as well as 
the relationships for interconnecting these resources and 
services. Our work through an earlier DOE project extended 
NML for multi-layer networks [5]. Aiming at describing 
heterogeneous cyberinfrastructures, MRML defines an extensible 
ontology for network, compute, storage and interconnects by 
further extending the NML.  
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Compared to other modeling languages such as YANG [6], 
MRML has some unique features. YANG is specialized in 
network configuration and state manipulation. It is often used as 
a southbound data modeling solution paired with the NETCONF 
protocol [7]. In comparison, MRML is a protocol-neutral full-
stack solution, meaning its models can be used for both 
southbound and northbound as well as for internal reasoning 
and computation. 

2.2  Service-Oriented Modeling Stack 

In practice, we use MRML for resource and service management, 
instantiation, integration, orchestration, abstraction, intent and 
policy, all the way from bottom up to the very top of the stack. 
We use MRML to carry semantics at every layer that provides 
programmability through an API. Figure 1 illustrates the service-
oriented modeling stack in contingency with function layers of a 
real-world orchestrator StackV that we will further describe in 
later sections. The Service Integration layer interacts with 
different sub-systems, namely service providers and domains, 
through Driver API, to pull their resource models and push 
model change “deltas”. Through this layer, sub-system models 
are integrated into a service integration model, a.k.a. system 
model, for the entire infrastructure and exposed as “full view” to 
service Integration Management API. It also conducts two-phase 
commit distributed transactions to decompose and push a system 
model “delta” to related sub-systems. At the top, the Service 
Abstraction layer interprets service intent as presented by an 
application into a service abstraction model using the MRML 
ontologies. For a complex service, the Service Abstraction layer 
will work with the Service Orchestration layer to compile and 
compute the service abstraction into detailed system model delta 
and push down to the Service Integration layer for instantiation. 
The API also provides methods to revert, modify and verify a 
service through its life cycle. These are all model driven, 
automated and programmability-ready to integrate into 
applications and DevOps procedures. 

2.3  Service Integration Modeling 
The MRML ontologies and future extensions are meant to 

describe arbitrary information infrastructures and services. 
Currently we use them to model multi-layer local and wide area 
networks, SDN, public and private clouds, attached network 
fabric, HPC clusters and parallel storage systems. Models of 
these diverse subsystems are generated in real time by pluggable 
modules and assembled into integrated model for the entire 
infrastructure in the Service Integration layer. 

As an example UMD/MAX is a regional optical network with 
multi-100G capabilities at Layers 1, 2 and 3.  This includes a 10G 
DirectConnect to the Amazon AWS US East Region. There is also 
an on-premise OpenStack cloud, which has compute nodes 
equipped with Single Root I/O Virtualization (SR-IOV) interfaces 
for hypervisor bypass. We are able to create dedicated layer-2 
paths between the public and private clouds for up to 10Gbps. As 
illustrated in Figure 2, we use StackV to integrate these 
subsystems using three pluggable drivers: AWS Driver, 
OpenStack Driver and Generic SDN Driver. Through standard 
RDF/OWL rendering, the MRML models pulled from the three 
drivers are combined into a complete MRML model, which 
provides all the details of resources and services for the entire 
infrastructure. 

Here we only describe at high level the MRML model pulled 
from the Generic SDN Driver to illustrate the general modeling 
solution. We model Layer-2 connectivity of the UMD/MAX 
network as one Topology. The topology model consists of Node 
and BidirectionalPort instances. All border ports are included in 
a single SwitchingService, which provides SwitchingSubnet 
instances to represent dynamic VLAN circuits. Edge ports 
peering with AWS DirectConnect and OpenStack SR-IOV 
interfaces have the connectivity described through a property 
isAlias. This allows the Service Integration layer to connect the 
three subsystem models into a whole. In this work we have used 
several ontology elements, whose meanings are straightforward 
by names. Detailed ontology definitions can be found in [3] and 
[4]. 

 

Figure 1: Service-oriented modeling stack illustrated by 
StackV system function layers 

Figure 2: Service integration modeling for cloud inter-
networking 
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2.4  Service Abstraction Modeling 
We use the same modeling to describe the services for end users 
and applications, only that the description is about abstract 
resources that reflect high level intent. An intent represents 
users definition of a service instance that is customized to 
support a specific set of application functions for a specific 
service life cycle. This users definition is in a domain-specific, 
human-readable, format and simplified language, which may 
vary in syntax and semantic form.  These different forms can 
then be translated into a unified abstraction using MRML. The 
MRML ontologies are well designed to accommodate abstract, 
virtualized and hierarchical resources and services which can 
apply to any system layers. This is why we call it a “full-stack” 
modeling solution. As part of the modeling solution, we 
developed a Simple Policy Annotation (SPA) ontology [8] to 
describe the user intent for service orchestration policies, such as 
resource inter-dependency, workflow order and service chaining. 
SPA is a component ontology of MRML, and is only used to 
facilitate orchestration computation at abstract level. For 
example, it can define a policy that applies to a virtual server, 
with constraints that specify where and how to schedule this 
server during the orchestration. 

On top of the internetworked cloud infrastructures, we create 
a virtual inter-cloud network that consists of AWS Virtual 
Private Cloud (VPC), OpenStack Virtual Tenant Network (VTN) 
and dedicated VLAN connection across the SDN in between. The 
virtualization is illustrated as the connected red bubbles in 
Figure 2. This virtual inter-cloud network “intent” is represented 
as an MRML Topology in Service Abstraction modeling. The 
Topology consists of two sub-level Topology instances one for 
VPC and the other for VTN, each having its own Node, 
BidirectionalPort, SwitchingService, SwitchingSubnet, 
RoutingService and RoutingTable instances and other elements, 
all in abstract forms, as none is available in the detailed MRML 
model at the Service Integration layer. The SPA statements are 
added to this abstraction model to describe the following intent 
policies: (a) Allocate VPC and VTN with contained compute, 
storage and network resources, (b) Compute a VLAN path 
between AWS DirectConnect and OpenStack cluster switch, (c) 
Stitch VPC gateway to a DirectConnect VLAN, (d) Stitch virtual 
machine SR-IOV interfaces to OpenStack cluster switch VLAN, 
and (e) The VPC gateway, SR-IOV interfaces and VLAN(s) in c 
and d depend on the results of a and b. Based on the MRML and 
SPA ontologies the service abstraction modeling thus describes 
the service intent in standard RDF/OWL format, which is 
consistent to other layers in the stack. 

3 STACKV: MODEL DRIVEN SERVICE 
ORCHESTRATION 

3.1  Service Orchestration Workflow 
StackV is a general-purpose orchestrator for networked multi-
services and is implemented based on the full-stack model driven 
intelligent orchestration approach. The software is written in 
Enterprise Java and deployed as a suite of Web Services. It 

provides APIs at all the model driven function layers as 
previously illustrated in Figure 1. Figure 3 shows the service 
orchestration workflow of StackV. From very top of the stack, 
applications communicate to the orchestrator with highly 
abstract service request, namely Intent. The StackV provides 
both GUI based Web Portal and REST API to help applications 
describe the intent. This is called “Service Model Description and 
Abstraction”. Outcome of the procedure is a formal MRML 
model that consists of abstract resources annotated with SPA 
policy statements. The abstract model data are then fed to a 
Dynamic Compile procedure and compiled into a model based 
computation workflow. A computation workflow consists of a 
variety of Model Computation Elements (MCE) as intelligence 
functions assembled into an execution tree. Each MCE uses 
system model data, service model data and policy data as input 
and accomplishes a specific function such as resource placement 
and connection computation. The output will be more detailed 
service model data, which could be used as input for another 
MCE. When the computation workflow finishes successfully, a 
System Model Delta will be created that provides detailed model 
statements about what need to change in the underlying 
infrastructures to satisfy the intent. 

3.2  Application Intent and Policy 
In StackV the Intent API is responsible for interpreting 
application intent and policy into service abstraction model. 
StackV front end provides both web portal and REST API to 
support extensible intent as a service. For example, it supports 
the intent of layer-2 VLAN connection through a Dynamic 
Network Connection (DNC) service, and virtual cloud with 
gateway to external layer-2 stitching point through a Virtual 
Cloud Network (VCN) service that consists of on-demand 
networked storage and DTN nodes. Both are application 
scenarios of the SD-SDMZ use case. 
Using VCN as an example, an application intent specifies the 
cloud provider identifier, subnets, placement of VMs in subnets, 
attached Internet and private gateways, custom routes, and 
optionally external layer-2 stitching port. The intent is firstly 
translated into abstract resource statements based on the MRML 
modeling. Then the SPA based policy statements are added to 
augment the service abstraction model. The resulting abstraction 
model typically consists of Policy Action, Policy Data and Policy 
Dependency statements. In the VCN service abstraction,  policy 
actions include virtual cloud creation, VM placement, storage 
allocation and mount, Globus end point installation, dedicated 

Figure 3: StackV service orchestration workflow 
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layer-2 network connection and virtual cloud to external 
network stitching. The policy data include the user data for 
resource dimensioning such as number of subnets, VMs, and 
amount of storage, and the intermediate variables for output of 
one policy action into another policy action. For example, the 
VM placement action will import policy data from the virtual 
cloud creation action to learn available subnets for the 
placement. The policy dependency statements define how an 
abstract resource depends on the policy actions and how policy 
actions depend on each other. 

3.3  Model Based Computation 
Based on the modeling stack described in Section II.B., the 
StackV service orchestration uses model based computation to 
transform a service abstraction model into a service integration 
model, Only the latter can be used to drive actual resource 
(de)allocation and states change. StackV leverages the open 
source Apache Jena [9] libraries to handle all its model data in 
native RDF/OWL format. The benefits of model based 
computation include eliminating conversion between interface, 
internal and persistence data structures, leveraging standard 
tools for data query, navigation, transformation and reasoning, 
and maintaining consistent data semantics through all the 
computation modules.  
Model Computation Element (MCE) is the basic computation 
module. The input and output of an MCE are both model data 
based on RDF/OWL, MRML and SPA ontologies. In the compiled 
computation execution workflow, each MCE instance computes 
for a specific purpose. We still use VCN as an example. A virtual 
cloud creation MCE takes in the initial service abstraction model 
and resource dimensioning policy data. It maps the abstract 
virtual cloud topology under a specific cloud provider topology 
found in the full system model from the Service Integration 
layer. Then the MCE creates the model statements for adding a 
virtual cloud, contained subnets, routes and gateways to an 
updated  service abstraction model and exports it together with 
some intermediate policy data. Depending MCEs such as the VM 
placement and layer-2 connection then use this new service 
abstraction model (more detailed than the original one) and 
policy data as input to perform their own computation. StackV 
has implemented sophisticated logic to concatenate MCEs and 
merge computation results. The basic idea of this technique is to 
use SPARQL [11] queries to “shape” the output of a upper stream 
MCE into custom JSON format and use JSONPath [12] queries to 
extract information and “fit” to the input of downstream MCEs. 
Success in finishing the computation workflow means StackV 
has resolved all model abstractions and policy annotations in the 
final product, and has turned an application intent into a System 
Model Delta. This “delta” (as shown in Figure 1) can be pushed 
down to the Service Integration layer for instantiation.  

4  APPLICATION SCENARIOS CASE STUDY 
The StackV system provides a thin-API that is syntax simple 

and semantics rich for service orchestration. Users can use either 
the StackV front end or their own code to interpret service intent 
into service abstraction model in uniform format. This gives 
them the flexibility to represent arbitrary service requests. In 
practice, we created a few abstraction templates for common 
service requests so users can quickly sketch out a request and 
then extend, tailor or change to any combination of resources, 
connectivity, and dependencies they desire. The orchestration 
layer is very general (only limited by the types of available 
MCEs) in handling the variations. In this work, we provide 
detailed case study of application scenarios for two use cases, 
SD-SDMZ and HCIN, that we have practiced in real world 
operations. Compared to the typically manual, time consuming 
operations for these applications scenarios, StackV can have 
services ready in a few minutes while providing users with 
better awareness of both the services and supporting 
infrastructures.  

4.1 Software Defined Science DMZ (SD-SDMZ)  
The traditional Science DMZ architecture is based on bare 

metal servers providing a fixed set of services typically focused 
on data movement between HPC facilities.  This Science DMZ 
concept has been proven a well thought out architecture that has 
greatly facilitated data movement services at a large number of 
university campuses and Department of Energy laboratories.  
However, we identified a class of users, and associated services, 
where this fixed architecture and pre-defined service model was 
not as flexible as desired for all use cases.   As a result, the 
Software Defined Science DMZ (SD-SDMZ) concept was 
developed.  The SD-SDMZ is a re-imagining of the traditional 
Science DMZ based on virtualization and cloud technologies.  
Built upon technologies similar to those used in modern data 
centers, the SD-SDMZ provides scalable, multi-tenancy 
environment, where each user or user group can allocate 
dedicated resources and use the resources in an isolated, 
independent and elastic fashion.  In addition external resources 
such as direct connections to public clouds along with research 
and education network services from Internet2 and ESnet are 
integrated.  The result is an edge facility where users can obtain 
traditional Science DMZ data transfer service, and/or have 
specialized topologies built which integrate on-premise cloud 
based compute/storage, and external connections to public 
clouds, local HPC, or other remote destinations.  Embedding this 
resource in the University of Maryland (UMD) Mid-Atlantic 
Crossroads (MAX) regional network allows the SD-SDMZ to 
leverage rich connectivity to advance cyberinfrastructure to 
provide new and flexible services. 
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UMD/MAX has deployed a ScienceDMZ for regional network 
connectors to utilize. Motivated by a desire to have a flexible and 
extensible infrastructure, we based this upon a SDN and Cloud 
technologies.  This includes OpenStack [10] driven Cisco Unified 
Computing System (UCS) clusters, Ceph [13]  parallel filesystem, 
SDN enabled network elements, and direct integration with local 
HPC high performance filesystem.  This UMD ScienceDMZ 
provides all of the standard ScienceDMZ services including 
DTNs, Globus Endpoints, integration with local HPC, high-speed 
layer3/layer2 flow termination, and a security perimeter. It has 
the capability to terminate 100G layer2/layer3 flows from 
Interent2 or ESnet to research project specific virtual machine 
topologies with high speed SR-IOV [14] interfaces to storage and 
external network locations. By leveraging the StackV intelligent 
orchestration solution, we have transformed this into an SD-
SDMZ infrastructure as depicted in Figure 4. Any UMD/MAX 
user within our regional network can create dedicated virtual 
SDMZ services on demand through the StackV self-service 
portal.  

As a specific service instance example, we have created a 
DTN cluster with five VM based DTNs for UMD campus 
researchers. Each DTN node has 16 cores, 32GB memory, a 
management network interface and two 10G SR-IOV interfaces. 
One SR-IOV interface faces external 100G network and binds to 
auto-registered Globus endpoint. The other faces internal Ceph 
storage network that mounts CephFS. With a predefined service 
profile, this DTN cluster with 5x10G network capability and 
parallel networked file system was created in a few minutes. We 
automate Kerberos based authentication on all DTN nodes, tied 

with the Globus authentication so that authorized users can 
access the storage and data transfer services instantaneously.  
We have also predefined “scale-out” service profiles that help 
create additional DTN instances, as partly illustrated in Figure 5. 

These profiles will have SR-IOV interfaces sharing network  
connectivity with the existing cluster. Whenever the five-node 
cluster gets too crowded, we can instantiate new service 
instances that add DTNs nodes to linearly scale the cluster until 
reach the limit of external network and internal storage. 

4.2 Hybrid Cloud Inter-Networking (HCIN) 
Cloud inter-networking in most cases is used to connect a public 
cloud with a private cloud to form application specific 
virtualization, namely hybrid cloud service. This requires co-
allocation of cloud resources at both clouds and network 
resources in between to stitch them together. This is complicated 
by the diverse set of services and technologies, including 
Amazon Web Services (AWS) DirectConnect, wide and local 
area networks, cloud network fabric and SR-IOV interfaces. In 
Section II.C, we described a HCIN infrastructure we operate at 
UMD/MAX. As a real-world application, we have provided 
domain scientists a HCIN hybrid cloud solution. With the model 
driven orchestration system, we are moving from manual 
provisioning and stitching of various resources to fully 
automated services. In one application scenario, a scientist 
wanted to run large-scale simulations using Hadoop cluster. 
They started with a few high-end local nodes for prototyping but 
desired many more in the hybrid cloud for production work 
loads. A HCIN hybrid cloud service with high performance 
compute, storage and network resources are ideal for them to 
achieve the elasticity around prototyping  and production cycles.  
Figure 5 shows a diagram of the abstraction model we composed 
based on their intent and sent to the service orchestration layer 

Figure 4: StackV backed SD-SDMZ at UMD/MAX 
Figure 5: A “scale-out” DTN service profile in StackV 
portal that serves the UMD/MAX SD-SDMZ 
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for compile and execution. In this example, the execution order 
of MCEs is below: 

1. Virtual_Cloud_Network MCEs compute model statements 
for adding AWS and OpenStack virtual networks, subnets, 
gateways and routes. 

2. VM_Placement MCEs add statements to place VMs into 
specific AWS subnets or to OpenStack subnets and hosts.  

3. L2_Path_Computation MCE computes layer2 path and add 
statements for all the VLANs on the switches, 
DirectConnect and UCS fabric between AWS VPC and 
OpenStack hosts from 1 and 2. 

4. SRIOV_Stitching uses the results of 2 and 3 to add model 
statements for OpenStack VM SR-IOV interfaces and for 
their connectivity to layer2 VLAN path.  

5. In parallel to 4, DirectConnect_Stitching uses the results of 
2 and 3 to to add statements for AWS VPC to attach to a 
DirectConnect VLAN and then to the layer2 path. 

6. NFV_Quagga_BGP MCE adds model statements for 
deploying Quagga [15] based virtual router on an 
OpenStack VM Linux using the results of 4 and 5. 

7. Networked_Block_Storage MCE adds model statements for 
creating Ceph [13] Block Devices (RBD) and attaching and 
mounting to designated VMs with traffic routed to SR-IOV 
interfaces. This depends on 2, 4 and 6. 

In the application scenario illustrated in Figure 6, an OpenStack 
VM is allocated as the master Hadoop node and all other nodes 
in the OpenStack and AWS clouds are slave nodes. The master 
VM also serves as the virtual router to bring together AWS and 
OpenStack VMs from separate networks through BGP. This 
creates a dedicated, secure virtual infrastructure contained by 
layer-2/layer-3 isolation. Between the compute and storage 
servers are SR-IOV, Quality of Service (QoS) enforced 10G/100G 
networks and AWS DirectConnect. This provides guaranteed 
high bandwidth and low latency that facilitate deterministic I/O 
performance. From users and applications perspective, these 
bring total transparency and on-premise experience, as 

consistent to what they typically have in local high-performance 
clusters. 

4.3 Service Topology for Data Transfer 
As an example orchestrated service, the SD-SDMZ DTN and 
HCIN functions can be combined to instantiate a service 
topology focused on data transfer.  The result can be a custom 
configuration of DTNs, storage system connections, and public 
cloud resource integration over direct network paths.  Standard 
data movement systems, such as Globus [16] can then be utilized 
for data transfers.  Figure 7 depicts an example of such a service 
topology.  These types of topologies could be built for dedicated 
use by a single user.  In this mode of operation, SD-SDMZ 
infrastructure resources would be released for others after work 
is complete.  In another mode of operation, this topology may be 
run by the facility operators and made available on a more 
general use basis.  For this case, the orchestration functions 
would be utilized for dynamic scaling of service resources based 
on overall facility load and expected activity. 

5 CONCLUSIONS 
In this work we presented a model driven intelligent 

orchestration approach to service automation for large 
distributed infrastructures. This approach provides a viable path 
to building general purpose service orchestrators on top of 
today’s increasingly complex and diverse networked systems. 
We leveraged the Semantic Web standards and developed the 
Multi-Resource Markup Language and Simple Policy Annotation 
to provide a formal modeling solution. This modeling solution is 
extensible and capable of integrating a wide spectrum of 
resources and services from many service providers and network 
domains. Based on the modeling foundation, we have developed 
an intelligent orchestration solution that uses pluggable Model 
Computation Elements (MCE) to construct flexible intelligence 
workflows that can solve a large set of end-to-end computation, 
co-scheduling and automation problems, and can be extended to 
handle a lot more. 

This approach uses the same modeling solution for a full 
stack of service functions including intent interpretation, service 
abstraction, service orchestration, computation and integration. 
This means high-level application intent can be translated into 
low-level resource state changes with consistent semantic 
representation and rendering through all the function layers. At 
the same time, applications gain awareness of low-level services 
and infrastructures bottom up via the same modeling stack. The 
model based telemetry data can be fed into the control 
intelligence and operation analytics. This completes the control-
feedback loop and makes continuous automation and 
optimization possible. We believe this represents a promising 
direction for future networked multi-services management and 
operation.  

Figure 6: An example HCIN hybrid cloud service intent 
(top) and abstraction model with orchestration workflow 
annotations (bottom: the red numbers correspond to 
execution order of MCEs). 
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In this work we also presented our full-stack model driven 
orchestrator called StackV. We walked through architectural 
details of its service orchestration workflow, application intent 
and policy handling and model based computation processes. 
Through case study of SD-SDMZ and HCIN application 
scenarios, we demonstrated that real-world implementation of 
the model driven intelligent orchestration approach is not only 
possible but also brings practical benefits to our daily operations. 
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