
Improving Data Transfer Throughput
with Direct Search Optimization

Prasanna Balaprakash∗†, Vitali Morozov†, Rajkumar Kettimuthu∗, Kalyan Kumaran†, and Ian Foster∗
∗ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

† Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
{pbalapra, morozov, kettimut, kumaran, foster}@anl.gov

Abstract—Improving data transfer throughput over high-speed
long-distance networks has become increasingly difficult. Nu-
merous factors such as nondeterministic congestion, dynamics
of the transfer protocol, and multiuser and multitask source
and destination endpoints, as well as interactions among these
factors, contribute to this difficulty. A promising approach to
improving throughput consists in using parallel streams at the
application layer. We formulate and solve the problem of choosing
the number of such streams from a mathematical optimization
perspective. We propose the use of direct search methods, a class
of easy-to-implement and light-weight mathematical optimization
algorithms, to improve the performance of data transfers by
dynamically adapting the number of parallel streams in a
manner that does not require domain expertise, instrumentation,
analytical models, or historic data. We apply our method to
transfers performed with the GridFTP protocol, and illustrate the
effectiveness of the proposed algorithm when used within Globus,
a state-of-the-art data transfer tool, on production WAN links and
servers. We show that when compared to user default settings
our direct search methods can achieve up to 10x performance
improvement under certain conditions. We also show that our
method can overcome performance degradation due to external
compute and network load on source end points, a common
scenario at high performance computing facilities.

I. INTRODUCTION

Advances in supercomputers, scientific instruments, and
sensor technologies require high-speed file transfer, for ex-
ample to distribute data to remote users and/or computing
facilities. Yet achieved data transfer performance is often only
a small fraction of the capacity of the high-speed networks
that have been increasingly widely deployed to support data-
driven science. Thus improving data transfer performance has
become a vitally important problem.

Many approaches have been proposed to improve the
throughput of data transfers. We can classify them into two
broad groups: low-level protocol and high-level application
tuning. Protocol-level work has produced new protocols such
as Hamilton TCP [18], CUBIC TCP [8], Scalable TCP [14],
and UDT [7] and methods for tuning their parameters.
Application-level tuning consists in optimizing high-level
data transfer parameters such as scheduling, socket buffer
size, pipelining, parallelism, and concurrency to maximize
bandwidth utilization [11, 12, 16, 27, 28]. We focus here
on improving the throughput of TCP-based transfers at the
application level by tuning the number of parallel streams.
Although this problem has received much attention from the
research community [25], previous approaches have used only

ad hoc heuristics. We formulate the task of tuning the number
of parallel streams as a mathematical optimization problem,
and show this optimization problem can be solved effectively
with direct search methods.

The context for our work is thus as follows. An application
splits large data into chunks that it sends simultaneously
via multiple TCP streams. Multiple streams can make bet-
ter use of parallel file systems, scale more rapidly to peak
bandwidth, and respond less aggressively to packet losses.
However, multiple streams also introduce overheads and can
compete with other flows. Thus, finding the optimal number
of parallel streams for a given transfer is a difficult task,
depending not only on network characteristics but also on
other external conditions at the endpoints. Moreover, both
network characteristics and external conditions can change
over time because of other activities on shared networks and
endpoints [25]. Existing approaches for tuning parallel streams
can be classified into three broad classes: analytical, empirical,
and dynamic tuning approaches.

In analytical approaches, first-principles analytical models
are developed to capture the relationship between network
characteristics and throughput. Hacker et al. [9] developed
analytical model for throughput as a function of round trip
time (RTT), packet loss rate, maximum segment size, and
number of parallel streams. Lu et al. [19] extended Hacker’s
model for congestion networks by computing the relationship
between packet loss rate, RTT, and number of parallel streams.
Altman et al. [3] developed analytical model that establishes
the relation between bottleneck link capacity and the number
of streams required for saturating it. Analytical models have
enjoyed significant success in the network protocol commu-
nity. However, they often fail to capture all of the complex
interactions between input parameters and dynamic external
load in the network infrastructure. Moreover, developing a
complex analytical model is time consuming and requires
expertise in several fields such as memory and compute
subsystems, protocols, and parallel file systems.

When analytical models become too restrictive, empirical
approaches are an effective alternative. For a given pair of
endpoints, experimental and/or historical transfer information
is used to build a predictive model using model-fitting ap-
proaches; the resulting model is used to find the optimal
number of parallel streams. Yildirim et al. [27] developed
a curve-fitting approach using Newton method to find the

optimal number of streams. Yin et al. [28] developed analytical
models that require calibration data from Iperf and GridFTP to
identify the optimal number of parallel streams. Kettimuthu et
al. [16] use historical information and adjust parallel streams
in response to external load. The key drawbacks of these
methods are that they lack generality—a model obtained
for one pair of endpoints cannot be generalized to others.
Moreover, collected data may become obsolete when source,
destination, or network is modified. Furthermore, the data may
not cover all possible external traffic and load conditions.

Dynamic approaches are model free: they transfer data
chunks with varying numbers of streams, measure the aggre-
gate throughput as a function of stream count, and modify the
number of parallel streams with respect to throughput gain
according to some fixed scheme. Ito et al. [11, 12] proposed
additive increase, multiplicative decrease, and multiplicative
increase adaptation schemes. Their approach requires deter-
mining the values of round-trip time and TCP buffer sizes
obtained from profiling tools. Balman et al. [5] proposed a
simple adaptive scheme that compares the two consecutive
throughputs (current and previous) and additively increases
the number of parallel streams by a constant factor. Yildirim et
al. [25] analyzed the effects of parallelism, concurrency, and
pipeline parameters on throughput of large dataset transfers
with heterogenous file sizes. They used rules derived from the
observed relationships to develop a heuristic that exponentially
increases parallelism and concurrency values until the maxi-
mum achievable throughput is reached.

Previously proposed approaches for dynamic tuning involve
ad hoc heuristics or the encoding of substantial expert knowl-
edge. The approach that we present here uses systematic
mathematical optimization to tune parallel streams at the appli-
cation level, an approach that has received little attention. As
with the dynamic tuning approaches referenced above [5, 25],
our method does not require any external measurements or
profiling results, relying instead on the measured throughput
of each transferred data chunk. The principal innovation in
our approach is the use of direct search methods, instead
of heuristic and ad hoc schemes, to modify the number of
streams. The direct search methods systematically explore the
search space defined by the tunable parameters.

The contributions of the paper are as follows.
• For the first time, we formalize and solve the problem

of optimizing data transfer throughput from a systematic
and general mathematical optimization perspective.

• We present an experimental study of direct search met-
hods, a class of mathematical optimization approaches,
for dynamically tuning the number of parallel TCP
streams during the data transfer.

• We demonstrate that the proposed direct search methods
can result in data transfer throughput improvement of up
to 10x and they can reach the performance of the expert-
knowledge-based-heuristic.

• We show that compute load and network traffic at the
source endpoint can significantly affect the throughput
and dynamic tuning can be used to improve the through-

put. This issue has received little attention from the
research community.

II. PROBLEM

Given source src, destination dst, and data of size s to
be transferred from src to dst, the problem of throughput
optimization can be formulated as maximizing the integral of
throughput over time:

argmax
x∈D

∫ T f
end

Tstart

ft(x, st, δt, θ
src
t , θdstt)dt, (1)

where x ∈ D ⊂ Rm is a vector of m tuning parameters
that control the transfer; D is a domain of possible values
for the tuning parameters; δt is a hyperparameter capturing
the network condition at time t; and θsrct and θdstt are
hyperparameters describing external loads on the source and
destination at time t, respectively. The non-negative function
ft is the observed throughput from time t′ to t′′ (t′′− t′ = dt)
for transferring data of size st. The integral limits Tstart
and T f

end denote the transfer start and end time, respectively,
where the T f

end depends on the throughput ft. The network
condition hyperparameter δt can include the transfer protocol
parameters. External load hyperparameters θsrct and θdstt can
include the state of the various components involved in the
transfer, such as CPU, memory, and (in the case of disk-to-
disk transfers) file system.

In this paper, we focus on transferring data from src
memory to dst memory with the TCP protocol. Parallel TCP
streams are often required to achieve transfer rates close to
network speeds [13, 26]. But blindly using a large number
of TCP streams can be counterproductive. On a loss-free
dedicated network connection with a smaller RTT (< 20ms),
even a single TCP stream can saturate the network; and in
that case multiple TCP streams decrease the throughput [22].
For dedicated connections with larger RTT and for shared
connections, parallel TCP streams help improve transfer rates
but only up to a certain point [15]. The point of negative return
varies based on external conditions such as other traffic origi-
nating from or destined to the same source and/or destination
endpoint, other traffic in the network, and other compute load
exerted on the source and/or destination endpoints.

From a methodological viewpoint, solving Eq. (1) is a
difficult task because of two primary dynamic factors. First,
network conditions (δt) such as available bandwidth, RTT,
packet loss rate, TCP congestion control dynamics, and bot-
tleneck link capacity can change over the transfer duration.
Second, the external loads (θsrct , θdstt) on the source and
destination can start and end at any time, further changing
the network conditions and the corresponding hyperparame-
ters. Consequently, the best parameter configuration x∗ for
one external condition might not be the best for a different
condition.

III. PROPOSED APPROACH

We solve the problem of finding the appropriate number of
parallel TCP streams using direct search. First, we present a

simple case study that illustrates the effect of external condi-
tions on the number of parallel streams. We then introduce the
proposed direct search methods.

A. Impact of external conditions

We begin our discussion with empirical observations from
a controlled experiment. We use a Nehalem machine (a dual
socket quad-core Intel Xeon CPU E5530 running at 2.40 GHz
with 48 GB main memory) at Argonne’s Joint Laboratory for
System Evaluation as the source and a Sandybridge machine
(a dual socket eight-core Intel Xeon CPU E5-2670 running
at 2.60 GHz with 32 GB main memory) at the University
of Chicago as the destination. Both the Nehalem and the
Sandybridge machines are connected to the network through
40 Gb/s NIC. Consequently, the theoretical peak throughput
is 40 Gb/s (5 GB/s).

We use the Globus Toolkit’s command line utility
globus-url-copy to transfer data from /dev/zero to
/dev/null under various controlled external conditions and
for varying numbers of TCP streams. For external network
traffic, we run a second transfer, with ext.tfr streams,
from source to destination. For external CPU load, we run
ext.cmp copies of the Intel Math Kernel Library’s dgemm
routine on the source machine. We configure each copy of this
routine, which calculates the product of two double precision
matrices, to consume all available CPU on all available cores.
In the rest of the paper, we use the term external load to
refer to this combination of external traffic originating from
the source and computation running on the source endpoint.

The number of TCP streams used by Globus GridFTP [1]
is the product of two user-defined parameters, concurrency
and parallelism. While the former exploit multiple CPU cores,
the latter does not. For example, when concurrency and
parallelism are set to 2 and 4, respectively, 2 CPU cores each
with 4 streams run a total of 8 parallel streams. In this study,
we fix parallelism at 1 and vary concurrency.

Figure 1 shows the observed throughput with and without
external load. We note that: 1) In both graphs, observed
throughput increases monotonically with the number of par-
allel streams up to a critical point, after which it decreases
monotonically. For our purposes here, critical refers to the
number that yields the highest throughput under a given load.
2) The critical point increases with external load. 3) External
load decreases observed peak throughputs.

We attribute the first observation, the monotonic increase in
the observed throughput with the number of parallel streams,
to the additive increase and multiplicative decrease (AIMD)
strategy adopted for determining the window size—the number
of packets that can be sent without acknowledgment—in the
TCP protocol during the steady state (or congestion avoidance
phase). The window size is increased gradually with an
additive factor; as soon as a packet loss is detected, it is
decreased drastically with a multiplicative factor. This slow
increase and fast decrease tends to result in unused bandwidth.
The newer TCP congestion control modules such as Hamilton
TCP [18], CUBIC TCP [8] (default in Linux), and Scalable

(a) (b)

(c) (d)

Figure 1: Boxplot statistics showing the impact of parallel
TCP streams (concurrency) on throughput from ANL to
UChicago in two scenarios: (a) no external load and (b)
high external load, i.e., both ext.tfr and ext.cmp set
to 16. We repeat the transfer for each concurrency value
5 times, and run each transfer for 10 mins.

TCP [14] use a smaller multiplicative factor and/or a more
aggressive additive factor but still result in unused bandwidth
(the endpoints used for experiments shown in Figure 1 use
Hamilton TCP.) The adoption of multiple streams consumes
otherwise wasted bandwidth and thus increases the achievable
throughput. After the critical point, however, the benefit of
multiple streams is dominated by processing overhead due
to context switching and related book-keeping required for
running many streams. These costs eventually reduce the
overall observed throughput.

With reference to the second observation, in the absence
of any external transfer, 64 streams are required to achieve
the peak, but when the external traffic rises to 64 streams,
the critical point increases to 256. As noted in previous work
[6, 21, 4, 10], the creation of many streams allows our flow
to claim the majority of available bandwidth. On the other
hand, increasing ext.cmp decreases the CPU time available
for each active data transfer stream. Increasing the number of
streams—up to the critical point—increases the overall share
of CPU time spent on the active data transfer stream and
consequently the aggregate throughput.

In summary, these results show that the critical number
of parallel streams for a particular transfer depends on the
external load. We conclude that one should be able to improve

Figure 2: Illustration of coordinate descent search with
two parameters X1 and X2. The method first finds the
best value for X1 by keeping X2 at constant value and
then finds the best value for X2 with the best-found X1.
Algorithm 1 Coordinate descent tuner (cd-tuner)
Input: starting point x0, control epoch time e, data size s, tolerance ε%

1 global s′ ← s
2 procedure RUNTRANSFER(x′)
3 fx′ ,s′′ ← transfer(x′, src, dst, s′)
4 s′ ← s′ − s′′
5 Output: fx′
6 end procedure
7 c ← 0
8 fx0 ← runTransfer(x0)
9 c ← c+ 1

10 fx1 ← runTransfer(x1)
11 c ← c+ 1
12 while s′ > 0 do
13 ∆c ← 100 ×

fxc−1
−fxc−2

fxc−2

14 if xc−1 6= xc−2 then
15 δc ← ∆c

xc−1−xc−2

16

xc ←

xc−1 + 1, if xc−1 = xc−2 and |∆c| > ε

xc−1 + 1, if xc−1 6= xc−2 and δc > ε

xc−1 − 1, if xc−1 6= xc−2 and δc < −ε
xc−1, otherwise

17 fxc ← runTransfer(xc)
18 c ← c+ 1

the performance of a given transfer by implementing an
adaptive approach in which changes to the external state are
observed by monitoring transfer throughputs periodically and
then an adaptive method is used to tune the number of parallel
streams for the given transfer. We implement this adaptive
capability using direct search methods.

B. Direct search

To solve the optimization problem, we focus on direct
search methods [17], a class of mathematical optimization
techniques. We investigate three such methods: coordinate
descent [24], compass [23], and Nelder-Mead [20].
Coordinate descent search: The main idea behind coordinate
descent search consists in searching the best value for one
parameter at a time (see Figure 2 for an illustration). To find
the best value for each parameter, we modify the coordinate
descent search to increase the number of streams whenever
additional bandwidth is available and to decrease it as soon as
the src has become the bottleneck.

Algorithm 1 shows the pseudo code of the customized

(a) Move (b) Shrink

Figure 3: Illustration of compass search with two pa-
rameters X1 and X2. The method tries to find the best
values for X1 and X2 in the coordinate directions of the
incumbent point, either by moving to the improving point
(Fig. 3a) or by examining points closer to the incumbent
point (Fig. 3b).

coordinate descent search (cd-tuner). At each control epoch
c of cd-tuner, the data is transferred for e seconds with xc
parallel streams. The function runTransfer(x′) starts data
transfer from src to dst for e seconds with x′ parallel streams
(lines 2–6). It results in s′′ data transferred with throughput of
fx′ ; the function also updates the global variable s′, which
keeps track of remaining amount of data that needs to be
transferred. The number xc streams for the control epoch c
is determined by observed throughputs fc−1 and fc−2 with
xc−1 and xc−2 parallel streams at previous control epochs c−1
and c − 2, respectively. The number of streams is increased
from xc−1 when there is a new congestion or additional
bandwidth. This condition is detected when xc−1 and xc−2
are the same but fxc−1 and fxc−2 are significantly different,
or when xc−1 > xc−2 and fxc−1 is significantly greater than
fxc−2

. The user-defined parameter ε% determines whether the
observed difference in throughput is significant. The number
of streams is decreased when the xc−1 value is too high so
that it creates bottleneck and/or overhead. This condition is
detected when xc−1 > xc−2 but fxc−1 is significantly smaller
than fxc−2 . The algorithm does not change the number of
streams when there is no significant change in throughputs
between two consecutive control epochs.

The pseudo code in Algorithm 1 optimizes only one param-
eter, but it can easily be extended without loss of generality for
cases when the number of streams is determined by more than
one parameter. In such cases, cd-tuner iterates through all
the parameters, one at a time; cd-tuner will move to tune
the subsequent parameter when the observed throughputs do
not vary over several consecutive control epochs. Note that the
heuristic proposed in [5] can be seen as a simplified version of
cd-tuner in which the number of streams is incremented by
one as long as there is a significant throughput improvement.
Compass search: At each iteration, the method tries to move
in the coordinate directions of the incumbent point x′. If one
of these steps yields improvement, the new point becomes
the incumbent. The step size λ determines the search radius
from the incumbent point. If none of these steps yields
improvement, the search continues with the reduced radius.
See Figure 3 for an illustration.

Algorithm 2 gives the pseudo code for the customized

Algorithm 2 Compass search tuner (cs-tuner)
Input: starting point x0, control epoch time e, data size s, tolerance ε%, step

size λ
1 globals s′ ← s, c, e
2 procedure COMPASS-SEARCH(x′)
3 fx′ ← runTransfer(x′)

/* generate coordinate directions */
4 Q ← {±ej |j = 1 . . .m}, where ej is the jth unit coordinate vector

such that |C| = 2m

5 while λ > 0.5 do
6 for each q ∈ Q do
7 xr ← x′ + λ× cj
8 xr ← fBnd(xr)
9 fxr ← runTransfer(xr)

10 if fxr > fx′ then
11 x′ ← xr ; break;
12 if xr 6= x′ then
13 λ ← λ× 0.5
14 Output: x′, fx′
15 end procedure

16 c ← 0; ∆c ← ∞
17 xc, fxc ← COMPASS-SEARCH(xc)
18 while s′ > 0 do
19 if c > 1 then
20 ∆c ← 100 ×

fxc−1
−fxc−2

fxc−2

21 if |∆c| > ε then
22 xc, fxc ← COMPASS-SEARCH(x0)
23 else
24 xc ← xc−1

25 fxc ← runTransfer(xc)

compass search tuner (cs-tuner). The algorithm first runs
the compass search routine (lines 2–15) with initial point x0.
At each iteration, it randomly samples a coordinate direction
q from the coordinate set Q. It then generates a new point
xr from q and λ, and evaluates the throughput of xr (lines
7–9). If an improved throughput is obtained, then the search
continues from xr. If no new point yields an improvement,
the search continues from x′ but with reduced step size (line
13). The search stops when λ becomes less than 0.5, in which
case the coordinates degenerate to single point. In the main
loop (lines 16–25), the algorithm monitors the throughput at
each control epoch c; whenever there is a significant difference
in consecutive observed throughputs, it invokes the compass
search routine.

Compass search was originally proposed for unbounded
continuous optimization problems involving real valued pa-
rameters that can take values from −∞ to ∞. However,
the parameters that determine the number of parallel streams
take only integer values and have specific limits because of
hardware/software limitations. Therefore, to handle bounded
integer parameters, cs-tuner uses the fBnd function that
performs two modifications. First, it forces newly generated
coordinate points to have integer values by rounding off their
values; for example (3.8, 9.2) is rounded off to (4, 9). Second,
when the coordinate value is outside its bounds, it projects
the point to the bound; for example (12,−1) is projected to
(12, 1). The function fBnd is applied immediately whenever
a new point is generated (line 8).

(a) Reflection (b) Expansion

(c) Contraction (d) Shrink

Figure 4: Illustration of Nelder-Mead search for two
parameters. For a simplex with 3 vertices, xb, xs, and xw

are the best, second best, and worst points, respectively.
The method tries to replace the worst point xw by reflecting
it through centroid to obtain xr (Fig 4a). When the function
value of xr is better than that of xb, xr is expanded further
to obtain xe (Fig 4b). If expansion point does not result in
improvement, xe is contracted to obtain xc (Fig 4c). When
no improvement is found by the three operations, a smaller
simplex is generated by shrinking the current simplex that
results in the replacement of all vertices except xb (Fig 4d).

Nelder-Mead search: The Nelder-Mead (NM) method nav-
igates the search space of m tunable parameters using a
geometric shape with m + 1 vertices called a simplex. For
example, for m = 1, 2, and 3, the simplexes are a line,
triangle, and tetrahedron, respectively. At each iteration, NM
tries to replace the worst vertex point (lowest throughput) in
the simplex via four geometric operations, namely, reflection,
expansion, contraction, and shrink, parameterized by R, E, C,
and S, respectively. See Figure 4 for an illustration.

Algorithm 3 shows the pseudo code of the proposed
NM-based stream tuner (nm-tuner). The main loop of
nm-tuner is similar to cs-tuner. It starts by running
a Nelder-Mead procedure (lines 2–36) that begins with an
initial simplex of m+1 points with the starting point x0. The
throughput fx. for each vertex x. is obtained by using the
runTransfer function. This is followed by search space
navigation using reflection, expansion, contraction, and shrink
operations. To handle integer parameters and their bounds,
nm-tuner uses fBnd(). It forces the simplex to move
only on integer values by rounded versions of the reflection,
expansion, contraction, and shrink, operations (lines 11, 19,
27, 33). The search stops when the simplex degenerates to a
single point.

The key advantage of these three methods over other
sophisticated numerical optimization approaches is that they
are computationally simple and therefore can be implemented
with minimal overhead. Moreover, they do not exploit the

Algorithm 3 Nelder-Mead tuner (nm-tuner)
Input: starting point x0, control epoch time e, data size s, tolerance ε%

1 globals s′ ← s, c, e
2 procedure NELDER-MEAD(x′)
3 Generate a simplex of m+ 1 points including x′
4 for j : 1 . . .m+ 1 do
5 fxj ← runTransfer(xj)

6 while simplex is not a single point do
7 /* Step1, Order and centroid: */
8 Relabel m+ 1 vertices so that fx0 ≥ · · · ≥ fxm

9 x̄ ← 1
m

∑
j 6=m xj

10 /* Step 2, Reflect: */
11 xr ← x̄+R(x̄− xn); xr ← fBnd(xr)
12 fxr ← runTransfer(xr)
13 if fx0 ≥ fxr > fxm then
14 replace xm with xr ; continue;
15 else
16 if fxr < fx0 then
17 go to step 4
18 /* Step 3, Expand: */
19 xe ← x̄+ E(xr − x̄); xe ← fBnd(xe)
20 fxe ← runTransfer(xe)
21 if fxe ≥ fxr then
22 replace xm with xe; continue;
23 /* Step 4, Contract: */
24 xt ← xn
25 if fxr ≥ fxt then
26 xt ← xr
27 xc ← x̄+ C(xt − x̄); xc ← fBnd(xc)
28 fxc ← runTransfer(xc)
29 if fxc ≥ fxn then
30 replace xn with xc; continue;
31 /* Step 5, Shrink: */
32 for j : 1 . . . n do
33 xj ← x0 + S(xj − x0); xj ← fBnd(xj)
34 fxj ← runTransfer(xj)

35 Output: x0, fx0

36 end procedure
37 See lines [16—24] in Algorithm 2; Whenever ∆c is significant, Nelder-

Mead procedure is applied to find the best number of parallel streams.

full history to prune the search space, and therefore can
revisit regions based on changing function values. This scheme
is particularly attractive for throughput optimization because
regions that are not promising may become promising as
external load evolves.

The effectiveness of cd-tuner depends on the starting
point x0. It should be close to the critical value x∗ because
it requires |x0 − x∗| control epochs to reach x∗. Conse-
quently, large difference between x0 and xc result in wasted
bandwidth. Moreover, cd-tuner will be less effective when
the external load changes rapidly, which will also result in
wasted bandwidth. The main advantage of cs-tuner over
cd-tuner is that, given a sufficiently large λ value, it can
make rapid progress toward the critical point. Nevertheless,
once it reaches the critical point, it will start evaluating the
neighbors of the critical point until λ value becomes less
than 0.5, which will result in wasted bandwidth. Therefore
λ should be chosen neither too large nor too small. Similar
to cs-tuner, nm-tuner can rapidly move to the critical
using reflection and expansion operations. The convergence to
the local solution is faster than cs-tuner because it uses
two operations (shrinking and contraction).

IV. EXPERIMENTAL ANALYSIS

In addition to the ANL and UChicago endpoints described
in Section III, we consider data transfer between ANL and
the Texas Advanced Computing Center (TACC). At ANL,
we use the same Nehalem machine as the source; at TACC
we use a Sandy Bridge node (a dual socket 16-core Intel
Xeon CPU E5-2680 running at 2.70 GHz with 32 GB main
memory) from the Stampede cluster. Data is transferred using
globus-url-copy from /dev/zero at the source to
/dev/null at the destination. RTT between the nodes is
33ms and the link capacity is 20 Gb/s.

We use the performance obtained for the data transfer
with the tuning settings used by Globus transfer [2] as the
baseline. Globus transfer is a hosted service that orchestrates
and manages GridFTP transfers for the users. It selects transfer
protocol parameters; monitors and retries transfers when there
are faults; and allows the user to monitor status. The number
of parallel streams used by Globus transfer is a product of
concurrency (nc) and parallelism (np). For large files, Globus
transfer uses default values of 2 and 8, respectively for nc and
np. For baseline, we run transfers with these default values;
we refer to this approach as default in our analysis.

We set the parameters for the tuners as follows. In
cs-tuner, the step size λ is set to 8; in nm-tuner, R,
E, C, and S are set to the customary values 1, 2, 0.5, and
0.5, respectively. In all tuners, we set the tolerance ε% for
significant difference to 5% and the control epoch e to 30 s.

All the discussed methods are implemented in Python.
The function runTransfer in Algorithms 1, 2, and 3
is a Python wrapper for running the data transfer us-
ing globus-url-copy, where only the parallelism (np)
option is supported as a command line parameter. We
implement concurrency (nc) by creating nc copies of
globus-url-copy using the joblib.Parallel library
with the backend=’threading’ option and pin them on
alternate sockets using the taskset system call.

We control the external load on the source by changing the
values of the parameters ext.tfr and ext.cmp from the
set {0, 16, 32, 64}. Note that external load on the destination
endpoint and third party traffic on the network will also affect
the throughput of the data transfer. However, for this study,
we did not control them explicitly.

A. Detailed analysis on tuning concurrency

Figure 5 shows the results of a first experimental study in
which we tune concurrency (nc) only, fixing parallelism (np)
to a default value of 8.

Adaptive concurrency improves throughput: Figure 5a
shows the observed throughputs of all tuners and default
in the absence of external load. We observe that cd-tuner,
cs-tuner, and nm-tuner obtain throughputs (∼3500
MB/s) that are 1.4x higher than that of default (∼2500
MB/s). We attribute the higher throughput to the dynamically
tuned nc values. Figure 6a shows the values of nc found
by different methods over time. We note that the default
nc = 2 (16 parallel TCP streams) cannot saturate the network,

(a) (b)

(c) (d)

(e) (f)

Figure 5: ANL to UChicago: Observed throughputs (with
overhead) obtained by tuners under various external loads

but nc = 5 (40 parallel TCP streams) does and results in
throughput improvement.

External compute load affects the throughput in a
significant way: From Figures 5b and 5c, we note that
introducing the external compute load on the source affects
the observed throughput much more than the external transfers
do. When ext.cmp is set to 16 and 64, throughputs obtained
by default are reduced to 200 MB/s and 100 MB/s, re-
spectively; however, cs-tuner and nm-tuner reach 1500
MB/s and 1000 MB/s, resulting in 7x and 10x improvement
over default. Figures 6b and 6c show that cs-tuner and
nm-tuner obtain higher throughputs by setting the value
of nc to 50 to 80, respectively. Although cd-tuner does
not reach the throughputs of cs-tuner and nm-tuner, it

provides 2x improvement over default.
External transfer load reduces the throughput: Figures

5d and 5e show observed throughputs when the external traffic
is introduced at the source. By increasing ext.tfr from
0 to 16 and 64, throughputs obtained by default reduce
from 2500 MB/s to 1400 MB/s and 900 MB/s, respectively.
In contrast, cd-tuner, cs-tuner, and nm-tuner achieve
throughputs of 3000 MB/s (ext.tfr=16) and 1800 MB/s
(ext.tfr=64), respectively, each 2x higher than that of
default. The nc values are adapted to 25 (ext.tfr=16)
and 35 (ext.tfr=64; see Figure 6c), respectively.
cd-tuner is sensitive to the starting point, but

cs-tuner and nm-tuner are robust: In the absence of
external load, cs-tuner and nm-tuner take 500 s to reach
steady-state throughput but cd-tuner takes only 100 s (see
Figure 6a). Since the starting value for nc is 2, cd-tuner
can reach the best value within three control epochs, whereas
cs-tuner and nm-tuner perform large steps in the begin-
ning, resulting in relatively slower convergence to steady state.
When the external compute load and traffic are introduced
(Figures 6b, 6d) cd-tuner becomes less effective because
the best nc values are not close to 2. Nevertheless, the large
step sizes of cs-tuner and nm-tuner allow them to find
an appropriate value for nc in about the same amount of time
(500–600 s; 16–20 control epochs).

Overhead under external compute load is significant:
Each call to the globus-url-copy must load the exe-
cutable into memory, allocate the buffer and required data
structures, create the required number of threads, transfer the
data, and free the memory. In cd-tuner, cs-tuner, and
nm-tuner, the globus-url-copy is restarted for every
control epoch. Consequently, the restart overhead in these
methods will be significantly higher than that of the default,
where the globus-url-copy is stopped only when the
transfer is over. In an ideal scenario, globus-url-copy
will allocate a sufficient number of threads and adapt the value
of nc without requiring restart. We call the throughput without
overhead the best-case throughput; we determine this value
by aggregating the throughput values reported by nc copies
of globus-url-copy. The best-case throughputs obtained
by the tuners, shown in Figure 7, are significantly higher than
those reported in Figure 5.

In the absence of external compute load and traffic,
cd-tuner, cs-tuner, and nm-tuner obtain steady-state
throughput of 4000 MB/s, compared with 3500 MB/s shown
in Figure 5a; the overhead corresponds to 17% reduction in
throughput. When ext.cmp is set to 16 and 64, throughput
reduction increases to 33% and 50%, respectively. Under
these conditions, the direct search methods achieve higher
throughput by increasing the value of nc but at the expense of
significant overhead. When ext.cmp is set to 16 and 64,
throughput does not reduce significantly and the reduction
remains at ∼15%. The nc values selected in response to
external network load are small relative to those selected in
response to external compute load; clearly, running 64 copies
of globus-url-copy is computationally less intensive than

(a) (b)

(c) (d)

Figure 6: ANL to UChicago: Concurrency values adopted
by tuners under various external loads.

64 dgemm copies.
Trend is similar on ANL to TACC: The throughputs

obtained by various tuners on ANL to TACC show a trend
that is similar to that of ANL to UChicago. An exception
is that without any external load, the default and direct
search tuners achieve 1900 MB/s. Although the achievable
throughput without overhead is 2200 MB/s in the direct search
tuners, because of the restart overhead, they achieve the same
throughput as default. cs-tuner and nm-tuner search
and adapt large values for nc (between 45 and 50) even in the
absence of external load. Consequently, the convergence of
cd-tuner to the best nc is slower. For all other external
load cases, cs-tuner and nm-tuner obtain throughput
improvements between 1.5x and 10x.

B. Tuning concurrency and parallelism and adaptation to
external load

Now we focus on tuning concurrency and parallelism
simultaneously. In addition, we assess the adaptiveness of
cs-tuner and nm-tuner by changing the external load
during the transfer. For each tuner, we allow 1800 s of data
transfer. From 0 to 1000 s, we set ext.tfr and ext.cmp
to 64 and 16, respectively; after 1000 s, both ext.tfr
and ext.cmp are set to 16. We compare throughputs of
cs-tuner and nm-tuner to that of default, which is
run under the same type of external load. Since cd-tuner
is less effective under changing external load conditions, we
did not include it in the analysis.

(a) (b)

(c) (d)

Figure 7: ANL to UChicago: Best-case throughput under
various external loads.

Concurrency is important: Figure 8 shows throughputs
obtained for the ANL to TACC transfers. We observe that
both cs-tuner and nm-tuner obtain throughputs that are
significantly better than that of default; the tuners obtain
1.3x (up to 1000 s) and 10x (after 1000 s) improvements.
Figures 8c and 8d show the trajectories of the concurrency and
parallelism adopted by cs-tuner and nm-tuner over time.
The throughputs in Figures 8a and 8b follow the trajectory of
the associated concurrency values. On the other hand, varying
parallelism values have only a minor impact on the throughput.
We observe that nm-tuner and cs-tuner follow different
search strategies as they maximize the observed throughput;
nm-tuner adopts large nc values to reach higher throughput
but the overhead associated with creating nc copies results in
reduced observed throughput. cs-tuner achieves a similar
throughput with relatively smaller nc values but with lower
overhead. We observed a similar trend for ANL to UChicago
transfers (see Figure 9).

C. Comparison with existing heuristics

We compare nm-tuner with the simple heuristic proposed
by Balman et al. [5] and to the expert-knowledge-based heuris-
tic proposed by Yildirim et al. [25], which we label heur1
and heur2, respectively. We modified heur1 in a similar
way to cd-tuner so that it can be used to tune more than one
parameter. Figure 10 shows representative results for ANL to
TACC transfers. For various external conditions, nm-tuner
and heur2 obtain throughputs that are significantly better

(a) Observed throughput (b) Throughput w/o overhead

(c) Concurrency (d) Parallelism

Figure 8: ANL to TACC. Tuning concurrency and paral-
lelism under varying external load.

(a) Observed throughput (b) Concurrency

Figure 9: ANL to UChicago. Tuning concurrency and
parallelism under varying external load.

than those of heur1. Both nm-tuner and heur2 reach
the maximum achievable throughput in a few control epochs.
The additive increment strategy means that heur1 requires
a larger number of control epochs to reach throughputs
comparable to those obtained by nm-tuner and heur2.
Although the effectiveness of heur2 stems from the fact that
it adopts an aggressive exponential increment strategy, it is
sensitive to the starting values. For example, when the starting
values of np and nc are larger than the critical values, then
heur2 (unlike nm-tuner) has no decrement mechanism to
reduce these values. Consequently, it will terminate with poor
parallel stream settings that will eventually affect the observed
throughput.

Figure 10: Comparison with existing heuristics: Tuning
concurrency and parallelism under varying external load.

D. Simultaneous tuning

We examine what happens when two dynamically tuned
transfers share the same endpoint. We run two data transfers
simultaneously, one from ANL to UChicago and one from
ANL to TACC, and use nm-tuner (or cs-tuner) to set
the concurrency and parallelism parameters for each transfer.
Note that the tuning performed for one transfer is not aware
of the tuning performed for the other; thus each transfer treats
the other as external load.

Figures 11a and 11b show the results when nm-tuner
(or cs-tuner) is used to tune nc and np dynamically
for each of the two transfers, without any other load (i.e.,
ext.tfr=ext.cmp=0). We observe that the throughput of
the ANL to UChicago transfer is improved at the expense of
the ANL to TACC transfer. The reason is that the ANL to
UChicago network can support up to 5000 MB/s throughput.
Consequently the tuner for the ANL to UChicago transfer
adopts a large number of parallel streams to inject data into
the network. Doing so reduces the ANL to TACC transfer’s
throughput because the outgoing traffic shares the same NIC
at ANL. In response, the tuner for the ANL to TACC transfer
increases the number of streams that it uses, in order to gain
additional bandwidth (see nm-tuner from 1500 s to 1800
s). We see evidence of complex interactions between the two
flows, which result for example in the ANL to UChicago
transfer often getting a much larger fraction of the available
outgoing bandwidth at ANL. Further study is required to
determine the reasons for these behaviors, which may be due
to different RTTs or loss rates, or to the temporal ordering of
control epochs, for example.

Recall that we formulated the problem 1 in Sec II as op-
timizing the throughput of individual transfers. Consequently,
the proposed tuners operate at the individual transfer level
but not at the endpoint level. To handle multiple transfers, we
may need to aggregate transfers involving a common endpoint
and then optimize the parallelism and concurrency values
for all such transfers simultaneously using nm-tuner or
cs-tuner. In so doing, we may be able to apply the methods
proposed by Kettimuthu et al. [16] to prioritize transfers.

(a) (b)

Figure 11: Simultaneous data transfer from ANL to
UChicago and TACC. The transfers are tuned by
nm-tuner (cs-tuner) at the same time.

V. CONCLUSION

We have presented a new approach to the problem of
improving data transfer throughput via the use of parallel TCP
streams. We proposed a model-free approach, a significant de-
parture from the analytical/empirical model-based approaches
that dominate the literature. Specifically, we formalized the
problem of optimizing data transfer throughput as a model-free
dynamic optimization problem. We customized direct search
methods, a class of mathematical optimization algorithms, to
adapt the number of parallel TCP streams based on the external
load. We evaluated the feasibility and effectiveness of the
proposed approach by applying it to a widely used file transfer
tool, globus-url-copy, under various load conditions,
and identified under what conditions the adaptive strategy is
effective. We showed that the direct search methods can greatly
improve achieved transfer throughput when significant external
load is exerted on the source endpoint.

Our future work includes (1) broadening the approach to
enable disk-to-disk optimization over sets of transfers with
different file sizes; (2) investigating ways to reduce the restart
overhead to increase the responsiveness of the proposed meth-
ods; (3) developing an end-to-end performance modeling and
tuning framework for high performance computing facilities;
and (4) extending the tuning approach to take into account the
destination endpoint.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
program under contract number DE-AC02-06CH11357. We
gratefully acknowledge the computing resources provided and
operated by the Joint Laboratory for System Evaluation at
Argonne National Laboratory.

REFERENCES

[1] B. Allcock et al. Globus striped GridFTP framework and server. In SC,
2005.

[2] B. Allen et al. Software as a service for data scientists. Commun. ACM,
2012.

[3] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic. Parallel TCP sockets:
Simple model, throughput and validation. In IEEE INFOCOM, 2006.

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and
R. H. Katz. TCP behavior of a busy internet server: Analysis and
improvements. In 17th Ann. Joint Conf. of the IEEE Comp. and Comm.
Soc., volume 1, pages 252–262. IEEE, 1998.

[5] M. Balman and T. Kosar. Dynamic adaptation of parallelism level in data
transfer scheduling. In Intl. Conf. on Complex, Intelligent and Software
Intensive Systems, pages 872–877. IEEE, 2009.

[6] L. Eggert, J. Heidemann, and J. Touch. Effects of ensemble TCP. ACM
SIGCOMM Comp. Comm. Rev., 30(1):15–29, 2000.

[7] Y. Gu and R. L. Grossman. UDT: UDP-based data transfer for high-
speed wide area networks. Computer Networks, 51(7):1777–1799, 2007.

[8] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed
TCP variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[9] T. J. Hacker, B. D. Athey, and B. Noble. The end-to-end performance
effects of parallel TCP sockets on a lossy wide-area network. In IEEE
Int. Par. and Dist. Proc. Sym., Washington, DC, USA, 2002.

[10] T. J. Hacker, B. D. Noble, and B. D. Athey. Adaptive data block
scheduling for parallel TCP streams. In 14th IEEE Int. Sym. on High
Perf. Dist. Comp., pages 265–275. IEEE, 2005.

[11] T. Ito, H. Ohsaki, and M. Imase. On parameter tuning of data transfer
protocol GridFTP for wide-area grid computing. In 2nd Intl. Conf. on
Broadband Networks, pages 1338–1344. IEEE, 2005.

[12] T. Ito, H. Ohsaki, and M. Imase. GridFTP-APT: Automatic parallelism
tuning mechanism for data transfer protocol GridFTP. In 6th IEEE Int.
Sym. on Clus. Comp. and the Grid, pages 454–461, Washington, DC,
USA, 2006. IEEE Computer Society.

[13] W. E. Johnston, E. Dart, M. Ernst, and B. Tierney. Enabling high
throughput in widely distributed data management and analysis systems:
Lessons from the LHC. In TERENA Net. Conf. (TNC), 2013.

[14] T. Kelly. Scalable TCP: improving performance in highspeed wide area
networks. SIGCOMM Comp. Comm. Rev., 33(2):83–91, 2003.

[15] R. Kettimuthu. Type- and workload-aware scheduling of large-scale
wide-area data transfers. https://etd.ohiolink.edu/, 2015.

[16] R. Kettimuthu et al. An elegant sufficiency: Load-aware differentiated
scheduling of data transfers. In SC, 2015.

[17] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct
search: New perspectives on some classical and modern methods. SIAM
review, 45(3):385–482, 2003.

[18] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance
networks. In 2nd Intl. Workshop on Protocols for Fast Long-Distance
Networks, 2004.

[19] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modeling and taming
parallel TCP on the wide area network. In 19th IEEE Int. Par. and Dist.
Proc. Sym., IPDPS ’05, Washington, DC, USA, 2005.

[20] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[21] H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: The case
for application-level network striping for data intensive applications
using high speed wide area networks. In ACM/IEEE Conference on
Supercomputing, page 37. IEEE Computer Society, 2000.

[22] B. Tierney. Experiences with 40G/100G applications. http://meetings.
internet2.edu/speakers/4067/, 2014.

[23] V. Torczon. On the convergence of pattern search algorithms. SIAM
Journal on optimization, 7(1):1–25, 1997.

[24] S. J. Wright. Coordinate descent algorithms. Mathematical Program-
ming, 151(1):3–34, 2015.

[25] E. Yildirim, E. Arslan, J. Kim, and T. Kosar. Application-level
optimization of big data transfers through pipelining, parallelism and
concurrency. IEEE Transactions on Cloud Computing, in press, 2016.

[26] E. Yildirim and T. Kosar. End-to-end data-flow parallelism for through-
put optimization in high-speed networks. Journal of Grid Computing,
10(3):395–418, 2012.

[27] E. Yildirim, D. Yin, and T. Kosar. Prediction of optimal parallelism
level in wide area data transfers. IEEE Trans. Parallel Distrib. Syst.,
22(12):2033–2045, Dec. 2011.

[28] D. Yin, E. Yildirim, S. Kulasekaran, B. Ross, and T. Kosar. A data
throughput prediction and optimization service for widely distributed
many-task computing. Parallel and Distributed Systems, IEEE Transac-
tions on, 22(6):899–909, 2011.

