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Abstract—Scientific data is not only rapidly increasing in
size, but in complexity of operations performed upon as
well. Compared to the prevalent use of ad-hoc approaches,
structured operators provide many benefits. In this paper,
we introduce FDQ - an Analytical Functions Distributed
Querying Engine intended for Array Data. Motivated by
needs of climate scientists in terms of both functionality
and scalability, we make three major contributions: First, we
introduce a new class of analytical querying – querying over
windows where the planes that construct these windows are
internally ordered. An example of this querying type is the
introduced MINUS analytical function, a function that sup-
ports querying over accumulative measurements with data
resets. Second, we describe in detail memory management
optimizations for efficient processing of analytical (and other
structured operators) querying over large datasets. Last, we
provide efficient methods to execute these queries in parallel,
using a sectioned (tiled) approach.

We evaluate our methods using real multi-dimensional
climate datasets, and show they outperform existing ap-
proaches. When running locally (not in a distributed man-
ner), we observed an average performance improvement of
538% compared to other engines for analytical calculations.
We also show our methods performance improve linearly
with the provided computing resources (scale up and out).

I. INTRODUCTION

Scientific researchers generate data by using advanced
(sensors or numerical computer simulations) tools and
typically store it as multidimensional arrays. The analy-
sis of such data is conducted by either manually written
scripts or programs, or Array Database Management
Systems (DBMS) such as SciDB [6] or ArrayDB [25].
Although DBMS that support scientific array data have
been available for a while, scientists have reservations in
using them, since they do not support all the required
needs and/or have high initial data loading costs.

An example of a query that cannot be addressed by
current systems is “calculate the daily median of the dif-
ferences between corresponding measurements (same time) of

current and previous days”. For example, if three samples
are collected a day, at 10 am, 5 pm, and 10 pm, and we
have 2 days of data – day 1 with [85, 75, 60] and day
2 with [80, 75, 50], the subtraction of day 2 from day 1
produces [-5, 0, -10]. The reported median in this case
should be -5. This calculation cannot be phrased using
one query (without the usage of “sub-queries” and joins)
over array data, mainly since the notion of matching
samples is lacking in current querying languages such as
the Structured Querying Language (SQL) [26] (including
SQL/MDA, an in development SQL extension for Multi-
Dimensional Array data).

In this work we provide the ability to generically
phrase and provide such functionality efficiently. This
work builds on top of our earlier work, where we had
developed structured query support on top of scientific
data [13], [14]. We had focus on querying over native
array storage formats (e.g. NetCDF), avoiding the costs
other systems require (data duplication or reformatting).
We use SQL as the interface to our querying systems –
some semantical adjustments to the operators were made
for fitting the array data context.

A. Motivation

This work builds on top of our earlier work and is
driven by our collaboration with the climate research
group at Argonne National Laboratory (ANL). Climate
data generated by the climate research group at Argonne
National Laboratory (ANL) [41], [48], [47], [40] has been
analyzed by using manually written scripts and applica-
tions. As in other areas, the climate researcher analysis
process often begins with a question, such as “Why did X
happen?”, which leads to a group of variables that may be
involved in X. These variables, together with the scientist
intuition, produce hypotheses that lead to research ques-
tions. Once they are answered, the researcher is either
satisfied, and can conclude and publish their results, or
other questions are raised.



Currently, research is conducted in this community by
programming applications for each question that arises.
The development time for those programs had become
a bottleneck – writing a separate (set of) program(s)
for each hypothesis is expensive. Also, the programs
inadvertently combine data querying, data analytics, and
learning, which increases the application complexity.
Last, software bugs can impact the result correctness,
and with large datasets and complex applications, re-
searchers are likely to not notice them. Using a declara-
tive query engine can help address these concerns.

We introduce the FDQ, Analytical Functions
Distributed Querying, Engine. FDQ focus is on a
class of operations called Analytical Functions, which
had not been defined or supported before for array
data. In analytical queries, the user provides dimensions
that are used to partition the data (similar to the SQL
GROUP BY partitions). Analytical functions process the
data in each of these partitions (which are referred to as
windows). However, unlike the partitions created by the
GROUP BY clause, windows in our context are ordered,
and therefore, the processing engine can access values
of different windows.

B. Challenges and Contributions

Multiple challenges arise in efficiently calculating ana-
lytical functions over scientific array data. First is estab-
lishing the syntax and semantics of analytical querying
over array data. Second, aggregations require heavy
mathematical calculations, even more so for analytics
that cross window boundaries. Minimizing the calcu-
lation overheads and processing queries efficiently is a
challenge. Third, generating arrays requires pre-defining
dimensions. Yet, the dimensions can be determined only
after we know the results. Last, processing of such
data requires a lot of memory – being memory efficient
requires careful design of algorithms.

Overall, to summarize the contributions of this work:
• We introduce Analytical Functions (also known as

“Window Querying”) over scientific array data. We
provide syntax and semantics, and extend Analyti-
cal Functions to not only allow windows ordering,
but to also allow ordering each window internally.

• We optimize our querying engines by using “chun-
ked” in-memory processing of array data. We refer
to these memory chunks, or tiles, as sections in
this work. Sectioning allows batching calculations
and utilize memory caches to improve performance,
decreasing disk accesses.

• We introduce methods to distribute windows cal-
culations. We present approaches to distribute the
query execution, based on both sectioning (or tiling)
and dimensional distribution approaches, while dis-
cussing the benefits of each approach over the other.

We evaluate our system, showing our new functional-
ity is performing well and that the new memory model
improves query performance. Our new memory design
is shown to not only improve performance of generic
queries, but to also behave better with skew data. We
also show that the calculations can be distributed effi-
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SELECT AVG(val)
FROM Array
WHERE val IS NOT NULL
GROUP BY Dim1, Dim2

Fig. 1: Dimensions Reduction: An All NULL Dimensional
Value (First Column) is Removed.

ciently; there is a nearly linear performance improve-
ment when scaling (up and out) the system.

II. BACKGROUND

A. Array Data
Scientific array data in our context is defined to be a set

of multidimensional arrays, each referred to as a variable.
Each variable is constructed from sequential values of a
specific data type, e.g. float or a user defined structure.
The dimensional values are either their indices (by the
order they appear), or a value stored in another array
and mapped by its index location. The array that contains
such dimension data can only contain unique values and
referred to as mapped dimension.

In particular, geophysical data, such as
weather/climate numerical simulations and satellite
data are often stored in files using formats such as
NetCDF and HDF5 [29], [15]. Scientific data storage
is made in raw files because it is accumulating over
time in different locations and other formats are
inefficient for its analysis, e.g. text files require parsing,
relational DBMS increase the physical storage size for
array data, etc. Currently, there are a few DBMS that
allow querying scientific data – widely known ones
are SciDB [7], MonetDB [38], and variants of Map-
Reduce [12]. Yet, none provide all requested features [7],
[43], [46], [17] – advanced analytics through declarative
querying over distributed arrays.

B. DSDQuery
Scientific array data are often distributed over multiple

files and sites, and it is desirable to support structured
queries while not requiring data to be loaded into a
database (or even re-formatted). DSDQuery [13] allows
a query over multiple data sources appear like a query
over one relation, while enabling SQL syntax to be used
over scientific array data. This is done by using what
DSDQuery refers to as virtual dimensions [13]. A common
example of a virtual dimension for distributed arrays is
the sampling time, which is often stored in each raw
file’s metadata.



DSDQuery uses multiple steps to generate its results.
First, it divides each query to multiple sub-queries,
each runs on a different source (raw file). Each sub-
query resultset is translated to an intermediate relation
that is stored on persistent storage. The format chosen by
DSDQuery for its intermediate relation storage is the di-
mensional form, e.g. [dim1, dim2, value], due to expected
queries with low selectivity values. After all intermediate
results are accessible, DSDQuery scans the results twice
– once for generating condensed dimensions (where all
values are used, for minimizing the resultset size), and
once for populating the output variable; this process is
referred to as dimension reduction. Figure 1 demonstrates
the dimensions reduction process. Last, DSDQuery con-
verts the resultset to the user requested format (the
default is a NetCDF file). Since frameworks used to store
scientific arrays do not allow to re-shape arrays after
creation, it is necessary to extract dimensional values
first, before populating the resultset.

III. DOMAIN

A. Climate Datasets and Variables
The datasets generated by ANL’s Climate Research

Group are saved in NetCDF [29] files, each represents a
specific epoch the file was sampled at or calculated for.
Each file contains about 100 variables, each of which is
structured from up to 4 dimensions (longitude, latitude,
vertical levels, and time). In the datasets we have used,
the time dimension has only 1 value, since the simula-
tions generating the datasets are configured to output
one time step [44], [33], [35] for each file. Last, not all
variables contain vertical levels.

Each variable used can be large – in our case, the
spatial resolution was 12 kilometers, and the model
covers most of North America. The data used contain
in total 2TB per year with a retention of 10 years –
a total of 20TB. Each raw file is self-describing and
contains the used dimensions, including their values.
Usually, all the variables in the same raw file use the
same dimensions definition – e.g., the precipitation and
temperature variables within each file will often describe
the same area.

The two variables we use for most of the queries in this
work are temperature and precipitation, simulated by a
regional climate model [41], [48], [47], [40]. Temperature
outputs are stored as instantaneous absolute values, as
measured in observatory stations or reported by weather
forecast. Precipitation amounts are output in an accumu-
lated mode – data is accumulated from the first epoch
until last one, and reported as the value accumulated
up to the sampling point. However, to avoid reporting a
large number as the precipitation amount, the program
(or operators) reset the precipitation amount at some
time point and let the model output accumulated pre-
cipitation again from that time point. In calculating the
amount of precipitation during a certain time-interval, if
there is no reset, we simply subtract the largest reading
from the smaller one. On the other hand, for those
data sequences where reset has been applied, special
processing is required. For example, for 5 samples with
the values: 3, 5, 2, 2, and 4, the amount of rain between

the first and last samples is 6 – 2 from sample 1 to 2,
2 from sample 2 to 3, which included a reset of the
“counter”, none between samples 3 to 4, and 2 more
between the last two samples. Usually the counter reset
is not often, leading to the ability to detect when a
counter reset occurred.

B. Querying Needs and Tools
Currently, the workflow at ANL and their research

communities includes manually extracting the variables
and storing them locally by using tools such as NCO [45]
and CDO [32]. The extracted data is used for simple
mathematical and algebraic manipulations or loaded to
a programming environment. The most common local
data calculated are daily mean, or seasonal/annual aver-
ages. More advanced analysis of the data is conducted by
scripts written and executed using NCL [21], Matlab [37],
[3], Python [19], [20], or R [10], [30].

When it comes to collaborations with, or assistance
provided to, other groups and other institutions to ad-
dress different problems, transporting the larger than
20TB of generated raw data is tedious and most impor-
tantly, unnecessary. ANL offers pre-processing analytics
to decrease the provided dataset size and address the
needs of collaborators and colleagues better. Lowering
the overhead on ANL’s personnel in addressing these
needs is important, and FDQ, in part, allows ANL to
address these generic inquiries over long periods of
times efficiently, while providing results faster.

IV. ANALYTICAL/WINDOW QUERYING

A. Definition
Analytical Queries are queries over data partitions,

each of which is referred to as a window. While analyt-
ical queries have some similarities to queries involving
aggregations over partitions (the GROUP BY clause), An-
alytical Queries are unique in allowing access to other
window’s raw data while processing a specific window.
For example, subtracting all days average values from
their previous day cannot be generated directly by using
the GROUP BY clause (this would require an inefficient use
of sub-queries and joins).

Analytical Functions are usually listed in the SELECT
clause of the query. As a consequence, Analytical Query-
ing enables a single query to use multiple Analytical
Functions – providing the ability to use multiple ag-
gregations over different partitioning scheme within one
query. The syntax for Analytical Functions is:

FUNC = FUNCTION(param list) OVER

([PARTITION BY part dim list]
[INTERNAL ORDER BY part int ord[INCOMPLETE]]
ORDER BY part ord)

FUNC is the syntax clause for analytical functions over
array data, and is intended to appear instead of a
column (or dimension) where column list are used in the
SQL standard [26]. Brackets mean the clause within it
is optional. FUNCTION is the analytical function used –
in our setting the available functions are average AVG,
minimum MIN, maximum MAX, lead LEAD, lag LAG, me-
dian MEDIAN, and minus MINUS.



C:\Users\Roee\AppData\Local\Temp\~vs390A.sql 1

SELECT AVG (TEMP.val) 
  OVER (PARTITION BY DAY_OF_YEAR(TEMP.date)

    ORDER BY DAY_OF_YEAR(TEMP.date)) 
  AS day_avg,

       LAG (day_avg, 1)
  OVER (ORDER BY DAY_OF_YEAR(TEMP.date))
  AS day_before_avg,
  day_avg  day_before_avg AS average_difference

FROM TEMP

Fig. 2: Analytical Query Example

The function parameters change based on the function,
for example, the MINUS function takes 2 parameters, the
variable upon it should operate, and the distance to
the anchor window (the window which its values are
used for the subtraction). The OVER clause marks that we
are using an analytical function. The PARTITION BY...
clause accepts a list of functions or dimensions (par-
allel to columns in relational settings) that are used
to build the partitions upon the calculations occur. By
using a list of functions or dimensions, the ORDER BY
clause determines the external windows order – only
dimensions or functions that are listed in the PARTITION
BY clause can be used. Up to here, although discussed in
the context of array data, similar functionality exists for
relational systems and standardized under the SQL and
SQL/MDA standards.

Next, we discuss the extension we suggest. The
INTERNAL ORDER BY is provided a list of functions or
dimensions as well, but here only dimensions that are
not listed in the PARTITION BY section can be used.
This clause is used to determine the order of planes
internal to the partition, as if there was a secondary
partitioning, internal to the generated window, based on
the provided list of dimensions. The INCOMPLETE clause
instructs the engine to provide (and not dismiss, as
the default COMPLETE behavior is) window’s values that
are calculated based on missing values (providing an
advanced and nuanced handling for the case NULL values
are addressed).

In Figure 2 we show an example of an analytical query
for finding the differences between subsequent day’s
average temperatures. The syntax shown was simpli-
fied compared to the ANSI standard for simplicity and
brevity. In the query there are three different parts: the
first shows a call to the analytical function Average: the
average is calculated over a window that corresponds to
each day’s data (the window is built through a function
that extracts the day of year); the ORDER BY clause does
not impact the results and can be omitted here. Next, we
use the function LAG, which allows us access to data that
was produced for the previous window, as determined by
the provided ORDER BY clause which is critical here. The
function LEAD, demonstrated in Figure 5, gives access
to the subsequent window values. Last, we calculate
the difference between the currently calculated day and
the day before, showing the difference in temperatures
across subsequent days.

Analytical Queries challenge the query optimization
process since they require repeating calculations, large
memory caches, and in some cases disk usage. Efficient
algorithms have been developed to address these issues
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Fig. 3: Analytical Query Example: Demonstration of
expected behavior of the MINUS analytical function with
data reset (highlighted)

for relational databases [23], [4], [9], [18], [49], [42]. Yet,
as to date, no engine for array data provides the full
strength of analytical functions, therefore developing
new methods, which utilize the sequential memory lay-
out, for efficient processing of these calculations in that
context is crucial.

B. Minus Function

We now introduce a new analytical function, MINUS,
which is similar to what we described in the previous
subsection. This function calculates the difference be-
tween the maximum value of each data point within
each window, to the last value of that matching data
point within the previous window. Mathematically, it can
be described as

MAX2(val)−LAG(val) (1)

where MAX2 is calculating the maximum in a manner
that compensates for data resets. This analytical function
cannot be phrased in SQL without the INTERNAL ORDER
BY clause, which was introduced here.

In Figure 3 we demonstrate the minus function over
precipitation data. Data was collected from 2 locations
during 3 days while the array contains 3 dimensions:
day, time, and location. The query PARTITION BY clause
contains only 2 out of the 3 dimensions – the 3rd dimen-
sion is aggregated upon. The INTERNAL ORDER BY clause
lets the MINUS Analytical Function know the internal par-
titioning ordering (for determining the “matching value”
to subtract). The traditional ORDER BY clause is used here
as well, allowing the aggregation function access the
previous (or next) partition values. We highlighted in
the figure where data reset occurred (and marked the
specific sample with an asterix).

In the figure, since the measuring begins at midnight,
it should end at the next day midnight – although we
have 3 days of data, we are missing a data point to
calculate the full last day. For clarity, we demonstrate
the calculation of the parking location for January 2nd :

(89−88)+3+(20−3) = 21 (2)
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Fig. 5: Query 1 - Analytical Function Query Example

V. QUERY EVALUATION AND OPTIMIZATION
ALGORITHMS

A. Analytical Functions Implementations
Our discussion here considers three analytical func-

tions that together cover all the different needs that
arise in implementing any analytical function: MIN –
Minimum, AVG – Average, and MINUS – Minus.

Before discussing the algorithms, we explain some of
the issues that arise. Figure 4 shows one variable with
three dimensions – Dim1, Dim2, and date (presented by
its value above each partial array). Running the query
in Figure 5 should produce results similar to those in
Figure 6. The first question to address is should “Week
2” be produced at all? The INCOMPLETE clause allows fine
grained control over this matter.

Had we decided not to issue the second window,
the whole Time dimension should have been removed.
Dimensional removals and additions introduce a chal-
lenge since, as mentioned before, current frameworks
do not allow to modify dimensional sizes and variable
definitions after the initial creation – enforcing two scans
of the results in some cases.

Next, we describe the implementation of the three
functions we are focusing on. Analytical functions re-
quire multiple data passes, while simultaneously per-
forming additional calculations. Since many calculations
are repeated it makes sense to pre-allocate memory in
a way that allows caching the expected re-used values.
For example, for LAG (a function to access previously
produced values at a specific window offset), we can
hold for every currently processed window the previous
values in memory, allowing fast access to those data,
without disk accesses or values recalculations.

However, memory is limited and this approach might
require more memory than available. We limit the mem-
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Fig. 6: Query 1 resultset

ory allocation to the available size, and work section-by-
section, i.e., iteratively produce full output for n values
at a time. Two options arise – to fill (calculate all values)
each window before calculating the values of the next
one, or to calculate a limited set of values for all the win-
dows and iteratively do so, until all sections, or tiles, are
calculated. The determination of which method should
be used is based on the function used, for example LAG
should use the latter approach.

The Minimum function implementation is straight-
forward. Each value is initialized to NULL, the empty
value, while a data scan updates values as necessary.

The average function implementation uses two arrays,
one for a values counter and one for the data – both reset
to 0. Every non-NULL value we process increase the cor-
responding counter by 1, while adding the value to the
data array. After all the data for the currently processed
section has been scanned, we divide the second array
by the first one (a ‘by place’ division), and process the
subsequent windows (after resetting the arrays values
back to 0).

1) Implementation of Minus: The MINUS function was
described in Section IV-B. A significant complexity of the
implementation comes due to the data counter resets. This
can be addressed by using three pre-allocated section
caches – the previous values, the current maximums, and
a careful maintenance of the current output (which is a
temporary summation of all the reset values).

In Algorithm 1 we show the implementation of the
MINUS analytical function in great detail, including mem-
ory optimization and proper handling of counter resets.
First, we iterate over the sections of the relevant variable.
We populate each coordinate with its appropriate value
(based on the presented calculations). After each section
is populated, the calculated values are cached for the
next calculation to take place. For brevity, we assume
that once a non-NULL value was assigned to a coordinate,
at each section, at least one non-NULL value will appear
for this coordinate again later.

As can be seen, there is an additional optimization
– we maintain calculated sub-results in place. When a
function requires access to the previous window, like
the function MINUS does, we alternate pointers to where
memory is allocated, switching the reading and writing
address, instead of moving values to different mem-
ory areas. This results in a more complicated memory
addressing mechanism, but it minimizes disk accesses
while decreasing in-memory data movement as well.

We use multiple functions for handling the
calculated results: CopyToOutput, SwapPointers,
and SendOutputOfSection. Although for simplicity
these are shown as independent function calls, in the
implementation we delicately calculate where we should
write to, and modify pointer addresses. These allow us
to avoid unnecessary data access and movement.

B. Optimization: Dimensional Restructuring

Dimensional restructuring is an expensive phase in the
scientific query execution process. This process entails re-
moving dimensional values that all its matching variable
values are empty (NULL), decreasing the resultset size.



Algorithm 1 Minus Analytical Function

1: procedure MINUS()
2: curr ← ALLOCATESECTIONMEMORY
3: out ← ALLOCATESECTIONMEMORY
4: lastMax ← ALLOCATESECTIONMEMORY
5: previousWindow ← ALLOCATESECTIONMEMORY
6: RESETTONULL(lastMax)
7: RESETTONULL(previousWindow)
8: for each section s do
9: for each ordered window w in s do

10: RESETTONULL(curr)
11: RESETTONULL(lastMax)
12: for each raw data source r in w do
13: for each coordinate c in r do
14: sc ← MAPTOSECTIONCOORDINATE(s, c)
15: DoAddition ← False
16: HadReset ← False
17: if r[c] == NULL then
18: continue
19: end if
20: if curr[sc] == NULL then
21: curr[sc] ← r[c]
22: lastMax[sc] ← r[c]
23: if previousWindow[sc] != NULL &&
24: curr[sc] < previousWindow[sc] then
25: HadReset ← True
26: end if
27: else
28: if lastMax[sc] == NULL then
29: curr[sc] ← r[c]
30: else
31: if lastMax[sc] ≤ r[c] then
32: if DoAddition then
33: curr[sc] ← curr[sc] + r[c]
34: − lastMax[sc]
35: else
36: curr[sc] ← curr[sc]
37: end if
38: else
39: DoAddition ← True
40: curr[sc] ← curr[sc] + r[c]
41: end if
42: lastMax[sc] ← r[c]
43: end if
44: end if
45: if !HadReset &&
46: previousWindow[sc] != NULL then
47: out[sc] ← curr[sc] -
48: previousWindow[sc]
49: else
50: out[sc] ← curr[sc]
51: end if
52: end for
53: end for
54: COPYTOOUTPUT(curr, s, out)
55: SWAPPOINTERS(curr, lastMax)
56: end for
57: SENDOUTPUTOFSECTION(out, s)
58: end for
59: end procedure

Since this process requires not only a scan of the data,
but also copying and remapping all existing values to
new locations, it is an extremely expensive one.

The three approaches to restructure dimensions are:
• A la carte – Dimensions are built on the go. Once a

new dimensional value is detected, it is added.
• Post-building – Execute sub-queries, accumulate

results, and after all results are retrieved build the
dimensions and the array.

• Pre-building – Build the dimensional values, and af-
terwards fill the data; requires executing the queries
twice, or caching some queries results.

For the first approach listed above, multiple imple-
mentations are feasible. Since this process requires to
completely rebuild the variable every time a dimensional
value is added, we consider this option as too expensive.
In addition, since the array changes its size while it is
formed, memory pre-allocation cannot be easily used.
The usage of current array data interfaces (NetCDF, for
example) require the dimensional setting to be known
before an array can be addressed, nullifying this ap-
proach as a viable option.

Post-building is the approach used in DSDQuery [13].
In this approach, each sub-query runs once, while
caching (to disk, due to the potential size) the results
in an intermediate format. Then, the cached results are
scanned twice – the first scan is used for building and
configuring the dimensions. The second data scan is
used to populate the created variable. This approach
does not fit well to queries with large selectivities –
for example, DSDQuery failed in executing a simple
aggregation query due to the need to store more than
200GB of intermediate results to a disk that is smaller
than that, for generating a 2MB output.

The last approach, pre-building, includes a two step
process as well. We first run queries to extract and build
the dimensions (in a streamed manner). Then, we run
data filling queries, over the source data, to assign the
results to their place. This method enjoys the benefits of
the previous approach, yet does not store intermediate
results. We experienced a performance boost of up to
4,000% using this approach. This method works well
mainly for condensed data, where executing the query
twice is more beneficial than caching results to disk –
the trade-off between the two last presented methods.

Working with climate data resulted in another opti-
mization that is often valid for scientific data. If the
data contains thousands of files, but all source from a
specific simulation method or set of sensors, only one
file of each source is needed to be used for building the
dimensions (since simulations/data sources produce the
same dimensional output).

C. Distributed Calculations

The calculations of the resultset can be distributed
over two orthogonal options: sections and dimensions.
In the first, section-based distribution, each section can
be calculated by a different process (either locally or
remotely). This results in each process accessing all input
data sources, yet reading only smaller portions of it.



The performance with this approach depends on the
properties of the distributed storage system.

The other option is distribution by dimensions. In this
option, each process accesses a set of dimensions from
each relevant file. The advantage of using dimensions
over sections comes due to virtual dimensions. Since
virtual dimensions are stored in separate files, if the dis-
tribution is based on a virtual dimension, two processes
rarely access the same file. Thus, this method allows
geographical files distribution, and optimizes file access.
However, certain analytical functions need access to
previous windows, and it is possible that two processes
will need to access the same file.

Another aspect is the output file generation, which
can be done using two different options: writing the
output file in a distributed manner, or adding a process
to accumulate results and generate the output file locally.
We experimented over both options, and concluded that
the differences in performance are marginal. In settings
where the storage system is well connected, like in
ours, both approaches produce similar performance. In
settings where the network is fast but storage is slow,
adding a process near the end user that generates the
final resultsets can be preferable. We chose to use the
second approach, since it works well in both settings.
The added process for writing the results will be referred
to as the management process and is discussed next.

D. Results Accumulation
We designate a process to accumulate the resultsets.

In Algorithm 1 we had shown how we transport results
from the calculation nodes to the management process
in units of sections (line 57). Next, for completeness, we
describe the management process.

Algorithm 2 Accumulate Results

1: procedure ACCUMULATERESULTS()
2: curr ← ALLOCATESECTIONMEMORY
3: output ← INITIALIZEOUTPUT
4: for each node n do
5: if WindowCanBeCopied then
6: address ← CALCULATEOFFSET(n, 0, 0)
7: address += output
8: GETRESULTSFROMNODE(n, address)
9: else

10: GETRESULTSFROMNODE(n, input)
11: for each section s do
12: for each window w do
13: address ← CALCULATEOFFSET(n, s, w)
14: address ← output + address
15: COPYWINDOW(address, input, w)
16: end for
17: end for
18: end if
19: end for
20: end procedure

In Algorithm 2 we show how results are accumulated,
taking sectioning into account. While when building the
results we can remain agnostic to the final output layout,
when accumulating results we may not. In the algorithm,
we differ between two scenarios. The first is where

each window is sequential and the memory contains
the fully calculated window. In this scenario, we may
just copy the input to the output. The more complicated
scenario is when the output sent from the calculating
node is not sequential (sections are used). In this case,
we need to copy section-by-section and window-by-
window, reducing the efficiency. As mentioned before,
this use case is rare due to how scientific data is usually
held, yet, for completeness, it must be addressed.

VI. SYSTEM IMPLEMENTATION

A. FDQ Engine

We have developed two different versions of FDQ
- a non-distributed version and a distributed one. The
non-distributed version of FDQ is based on DSDQuery
DSI [13] and is currently in use by scientists at ANL.
The code base is implemented as a DSI plugin to Globus
GridFTP [1], [11].

The distributed version uses MPI [16] for communi-
cation. For improving performances, we decrease the
number of transported messages by calculating multiple
sections and sending all of these to the management
process together, within larger, but fewer, messages.

The implementation of both engines is in C++.
The current system database is implemented using
SQLITE [27]. Although it is not the most efficient rela-
tional system, it was chosen because it is the easiest to
maintain and access, especially when user permissions
are limited. This database is used for internal engine
metadata queries, such as which variables are stored and
where, as explained in DSDQuery [13].

B. ANL Web Portal

A web portal has been implemented at ANL to fa-
cilitate scientists’ interaction with their data visually. In
Figure 7, we show a screen-shot showing some of the
provided functionality. This web portal is hosted on a
Laboratory Computing Resource Center (LCRC)1 web
application server. The FDQ engine is run from a location
accessible to this portal.

The portal page presents scientists with the relevant
search parameter values and models that can be queried,
and then maps user input back to the application server
into an FDQ query. An extended SQL syntax that in-
cludes support for Analytical Window Querying is used.
The web application uses globus-url-copy2 (an open
source GridFTP client) to submit the query to the FDQ-
enabled server and retrieves the resulted NetCDF file.
The NetCDF file is made available on an anonymous
read-only GridFTP server. It can then be downloaded
by the user using the Globus transfer service [2]. We
chose this architecture since it is likely a user would
like to download the results to their local environment
or that different users would run the same query – this
architecture eases the implementation for both.

1http://www.lcrc.anl.gov
2http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/user/



Fig. 7: ANL Querying Portal, backed by FDQ

VII. EVALUATION

In this section, we evaluate our system. Our goal is
to show the usage of FDQ is feasible with reasonable
run times, is scalable, and that it outperforms earlier
implementations (for supported queries). We consider
both group-by queries and analytical queries, using both
non-distributed and distributed versions of our engine.

With exception to experiments involving comparison
with SciDB, experiments were executed on the Blues
cluster at ANL. The cluster is constructed from about
350 nodes, each has 64GB memory, and uses Intel Xeon
E5-2670 2.6GHz processors. All the data used for these
experiments is real climate data, generated by ANL. The
datasets comprise temperature and precipitation vari-
ables, Section III, have 2 common dimensions (latitude
and longitude) and 1 virtual dimension (sampling time),
and contain data for North America. Each day usually
consists of 8 samples, distributed among different files.
The daily precipitation data (not including any meta-
data) is 24MB, while the daily temperature data is 704MB
(the latter has an additional dimension – vertical levels).
In our experiments we accessed up to 20 TB of array
data, and processed up to 1TB of it.

A. Average Function Performance
In this experiment we compared the execution of the

Average analytical function performance to our prede-
cessor engine and to the community leading Scientific
Array DBMS, SciDB [34]. This function does not require
cross-windows access, and therefore can be executed by
using the GROUP BY clause for partitioning. We used an
array that varied in size between 100MB and 90GB.

In Figure 8 we show the queries execution time and
compare it to the precursor engine, DSDQuery (DSQL).
Each queried day involves about 700MB of data, and
thus 128 days query processes 90GB of data. We consider
two queries, one which averages 16% of all data, and
another that averages 100% of the data. The baseline
system crossed the timeout threshold, 15 minutes, when
querying 90GB of data, which is the reason we report

Fig. 8: Execution Time of The AVG Function Over Par-
titions With Different Selectivities (16% and 100%) [128
days - 90GB]

results for only up to 128 days (and 32 days for 100% se-
lectivity). While FDQ is comparable for smaller datasets,
when larger datasets are used FDQ performs several
times faster. For example, for a query over 32 days
(22GB), FDQ performs 3.5 times faster for queries with
low selectivities and 13.3 times faster when querying
all data. FDQ improvement increases with dataset sizes
– for 128 days (90GB) the improvement of FDQ over
DSDQuery increases to 5.05 times. This is sourced in
the low impact different selectivities have on FDQ query
execution – querying 6 times more data slowed DSQL by
about 600% while FDQ was slowed by at most 22%. This
is because of the more nuanced memory management
that is increasing efficiency and decreasing the amount
of data movement.

Next, we compare our engine to SciDB. We used a
different environment for this experiment, where we
could install SciDB. We used linux kernel (Debian) 4.4 on
a machine with i5-4590 and 16GB of RAM. Both engines
were set to use only 1 process. We used 3 3-dimensional
arrays (100MB, 1GB, 10GB). It should be noted that there
is a significant cost of loading data to SciDB, which we



Fig. 9: Query Runtime Speedups: FDQ Over SciDB

do not account for here. Our queries calculated averages
over different partitioning configurations. Specifically,
the queries involve 1-partition (longitude, generate 5KB
of data), 2-partitions (longitude and latitude, generate
1.8MB of data), or 3-partitions (which returns the original
array). In some of the queries we used value based sub-
settings (WHERE val < x) to control selectivity – in FDQ,
subsetting queries initiate the use of bitmap indexes to
locate the queried data, and we wanted to measure its
cost. For SciDB, we report the fastest execution out of
4 consecutive runs – this allows SciDB caches to fill
correctly and to be utilized. FDQ does not use cross-
query caches, therefore warm-up runs are not necessary.

In Figure 9 we present the results of the SciDB compar-
ison. Each bar in the figure shows the speedup of FDQ
compared to SciDB, while the bars are grouped based on
the number of partitions used in the queries. The vertical
axis, speedup, is logarithmic. The baseline of the figure
is at the value 1; bars that are headed downwards signal
that SciDB performed better. The larger the dataset, the
better FDQ is – for array size of 100MB the execution
time of both engines are similar, yet for larger arrays
our speedup is between 2 to 21. When we use value
based subsettings, the results are more moderate – an
improvement of between 1.2 to 2.586. This is due to
the dimensional restructure, the array rebuild in a more
condense structure, and the generation of a NetCDF
file as the query result. In comparison, SciDB emits
coordinatal results that allow it to skip the restructure
process and handle sparsity better, but prevents users
from using their existing tools to visualize and analyze
query resultsets. The last presented setting, 3 partitions,
has a speedup of 9.4x for the 10GB dataset, lower than
the speedup measured for the two other cases, 19.23x
and 20.53x. This is because of the usage of virtual
memory due to the resultset size.

The results for the “No Partition” group shows that
for most datasets, when no partitioning is used SciDB,
performs better, as expected. FDQ is not optimized for
this case. Yet, when data does not fit in SciDB cache,
it performs quite badly – a factor of 6 slowdown was
observed for the 10GB array.

Overall, we can see the following: FDQ memory op-
timizations are desirable for array data querying, and
outperform previous designs. In addition, FDQ behaves
well for queries with changing selectivities and different
columns order in the PARTITION BY clause; SciDB slows

Fig. 10: Runtime of Minus Function: Benefits of Memory
Optimizations in FDQ [1024 days - 24GB]

Fig. 11: Comparison of Analytical Functions Runtimes
using FDQ [1024 days - 24GB]

down between 2 to 4 times if the partitions used for the
window generation are not in the optimized order.

B. Analytical Function Performance and Scalability
We focus on the execution of several analytical func-

tions, including the most expensive analytical function,
Minus. While the support for Minus queries was only in-
troduced here, for comparison, we upgraded DSDQuery
to support this function while using the same methods
for memory access and management. No other engine
provides the ability to run these queries.

In Figure 10 we show a performance comparison of
DSDQuery [13] with FDQ. The X-axis scale is logarith-
mic, while the Y-axis is not. As can be seen, DSDQuery is
slower, and its run times are not feasible for a scientific
workflow – querying 16 days of data (about 384MB)
takes more than 10 minutes using DSDQuery, while it
takes 28 seconds using FDQ. Querying larger amounts of
data, 64 days (1.5GB) takes more than 30 minutes using
DSDQuery while taking only 59 seconds using FDQ.

In Figure 11 we show run times comparison amongst
the most commonly used functions. The graph shows the
most simple (maximum) and the most complicated (mi-
nus) analytical functions perform similarly with the
same pattern, suggesting any needed analytical function
will execute efficiently, within these two boundaries.

Next, we evaluated how the system scales on a ma-
chine with 8 cores. We ran a query using the Average



Fig. 12: Execution time of Average Function with Increas-
ing Number of Threads

Fig. 13: Execution Time of the Average Function With
Increasing Number of Nodes

analytical function over changing number of days –
varying from 64 (1.5GB) to 512 (12GB). As can be seen
in Figure 12, the system scales well, up to the number
of cores available on the machine. The improvement is
linear, as expected.

Next, we ran an average query in a fully distributed
manner. We executed the same query for different num-
ber of days, calculating the daily average. All results
were consistent – for example, processing of 128 days on
one node took 40.99S, while processing of 256 days on
one node took 81.71S; an additional example, processing
of 1024 days took 6.57s using 64 nodes, while processing
256 days took 1.66s and 0.93s for 128 days on the same
amount of nodes.

In Figure 13 we report the run times of a query using
the Average analytical function for changing amount of
days. It is noticeable that as the parallelism increases,
the performance improve linearly. An interesting pattern
that was uncovered is that when an extremely small
number of days are processed on one node (1 day in the
128 days experiment over 128 nodes), the performance
degrade. This is a result of the overhead in the commu-
nication and reduction algorithms.

In conclusion, FDQ performs and scales well. The
new memory management architecture together with the
optimizations described before allow scientists to use
structured query operators efficiently. Calculations are

distributed in a manner that allows linear improvement
with the number of used nodes. A noticeable advantage
is the ability to run an analytical function for large
amount of data and windows in only a few seconds
while processing many raw files. For example, we got
to 1024 days over 64 nodes in 6.57 seconds, times that
are unheard of within these communities.

VIII. RELATED WORK

Scientific Data Management Systems: SciDB [6] is a
centralized DBMS that uses database-like caches to pro-
cess array queries; but it provides limited querying abil-
ities and requires manual array storage configuration.
Storage engines such as TileDB [28] and ArrayDB [25]
provide different approaches for configuring array stor-
age. MapReduce [12], [46], [17] systems use HDFS [5],
or a variant, to store data and allow users to query
data by either programing an application to do so or
using a high-level querying framework like Hive [36].
MapReduce frameworks for processing array data, e.g.
SciHadoop [8] and MERRA [31], provide native querying
abilities over array data, yet, they do not provide generic
declarative querying support, do not support geograph-
ically distributed data, nor provide the join operator
or analytical functions support. Finally, Wanalytics [39],
although addressing joins in distributed settings, does
not handle window querying nor array data.

All these systems require pre-processing and data
loading. Our system allows executing queries over na-
tive storage, which is desirable if data is generated at a
high rate and queried infrequently.

A few querying languages have been suggested for
querying array data. AQL [24] is the most referred
and used one. In an attempt to standardize multi-
dimensional array querying syntax, there is an effort to
extend SQL [26] to address these data – referred to as
SQL/MDA. Both do not consider advanced analtyical
querying. In addition both implicitly assume array data
is not distributed through virtual dimensions.
Analytical/window functions: Analytical functions have
been available in relational system for a while [18], [23],
[9]. The introduction of these functions to the scientific
array DBMS is still limited. Specifically, SciDB [22] sup-
ports a limited syntax for analytical functions. It does
not provide cross windows data access, but does allow
a window to be defined. With the SciDB window, joining
two different window queries is a possible mechanism to
manually implement functionality such as lead and lag.
However, because functionality is broken across different
queries efficiency is limited – memory and execution
optimizations cannot be used since both queries need
to execute before the join can be executed.

IX. CONCLUSIONS

In this work we introduced analytical functions to the
domain of scientific array data. We shown the current
tools used by scientists are not sufficient and introduced
new syntax, algorithms, and techniques that enable the
usage of a structured querying engine to efficiently pro-
cess complex analytical queries. We evaluated our work
over real dataset, and shown that we allow near real-
time analytical querying, outperforming other options.
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