# random MOQP s p a r s e data from matlab let n := 20 ; # ... number of variables let m := 10 ; # ... number of constraints let p := 3 ; # ... number of objectives # Hessian matrices G let G[ 1 , 1 , 1 ] := 2.3 ; let G[ 1 , 2 , 2 ] := 2.3 ; let G[ 1 , 3 , 3 ] := 2.3 ; let G[ 1 , 4 , 4 ] := 2.3 ; let G[ 1 , 5 , 5 ] := 2.3 ; let G[ 1 , 6 , 6 ] := 2.3 ; let G[ 1 , 14 , 6 ] := -1.1 ; let G[ 1 , 7 , 7 ] := 2.3 ; let G[ 1 , 8 , 8 ] := 2.3 ; let G[ 1 , 9 , 9 ] := 2.3 ; let G[ 1 , 16 , 9 ] := 1.4 ; let G[ 1 , 10 , 10 ] := 2.3 ; let G[ 1 , 11 , 11 ] := 2.3 ; let G[ 1 , 12 , 12 ] := 2.3 ; let G[ 1 , 13 , 13 ] := 2.3 ; let G[ 1 , 6 , 14 ] := -1.1 ; let G[ 1 , 14 , 14 ] := 2.3 ; let G[ 1 , 16 , 14 ] := -1.6 ; let G[ 1 , 15 , 15 ] := 2.3 ; let G[ 1 , 18 , 15 ] := 0.26 ; let G[ 1 , 9 , 16 ] := 1.4 ; let G[ 1 , 14 , 16 ] := -1.6 ; let G[ 1 , 16 , 16 ] := 2.3 ; let G[ 1 , 17 , 17 ] := 2.3 ; let G[ 1 , 15 , 18 ] := 0.26 ; let G[ 1 , 18 , 18 ] := 2.3 ; let G[ 1 , 19 , 19 ] := 2.3 ; let G[ 1 , 20 , 20 ] := 2.3 ; let G[ 2 , 1 , 1 ] := 1.2 ; let G[ 2 , 10 , 1 ] := 0.53 ; let G[ 2 , 2 , 2 ] := 1.2 ; let G[ 2 , 19 , 2 ] := 0.22 ; let G[ 2 , 3 , 3 ] := 1.2 ; let G[ 2 , 4 , 4 ] := 1.2 ; let G[ 2 , 5 , 5 ] := 1.2 ; let G[ 2 , 7 , 5 ] := -0.81 ; let G[ 2 , 18 , 5 ] := -0.92 ; let G[ 2 , 6 , 6 ] := 1.2 ; let G[ 2 , 5 , 7 ] := -0.81 ; let G[ 2 , 7 , 7 ] := 1.2 ; let G[ 2 , 8 , 8 ] := 1.2 ; let G[ 2 , 9 , 9 ] := 1.2 ; let G[ 2 , 1 , 10 ] := 0.53 ; let G[ 2 , 10 , 10 ] := 1.2 ; let G[ 2 , 11 , 11 ] := 1.2 ; let G[ 2 , 12 , 12 ] := 1.2 ; let G[ 2 , 13 , 13 ] := 1.2 ; let G[ 2 , 14 , 14 ] := 1.2 ; let G[ 2 , 15 , 15 ] := 1.2 ; let G[ 2 , 16 , 16 ] := 1.2 ; let G[ 2 , 17 , 17 ] := 1.2 ; let G[ 2 , 5 , 18 ] := -0.92 ; let G[ 2 , 18 , 18 ] := 1.2 ; let G[ 2 , 2 , 19 ] := 0.22 ; let G[ 2 , 19 , 19 ] := 1.2 ; let G[ 2 , 20 , 20 ] := 1.2 ; let G[ 3 , 1 , 1 ] := 2.4 ; let G[ 3 , 2 , 2 ] := 2.4 ; let G[ 3 , 3 , 3 ] := 2.4 ; let G[ 3 , 4 , 4 ] := 2.4 ; let G[ 3 , 10 , 4 ] := 0.61 ; let G[ 3 , 5 , 5 ] := 2.4 ; let G[ 3 , 6 , 6 ] := 2.4 ; let G[ 3 , 7 , 7 ] := 2.4 ; let G[ 3 , 8 , 8 ] := 2.4 ; let G[ 3 , 14 , 8 ] := -0.059 ; let G[ 3 , 9 , 9 ] := 2.4 ; let G[ 3 , 4 , 10 ] := 0.61 ; let G[ 3 , 10 , 10 ] := 2.4 ; let G[ 3 , 11 , 11 ] := 2.4 ; let G[ 3 , 18 , 11 ] := -1 ; let G[ 3 , 12 , 12 ] := 2.4 ; let G[ 3 , 13 , 13 ] := 2.4 ; let G[ 3 , 8 , 14 ] := -0.059 ; let G[ 3 , 14 , 14 ] := 2.4 ; let G[ 3 , 15 , 15 ] := 2.4 ; let G[ 3 , 16 , 16 ] := 2.4 ; let G[ 3 , 17 , 17 ] := 2.4 ; let G[ 3 , 11 , 18 ] := -1 ; let G[ 3 , 18 , 18 ] := 2.4 ; let G[ 3 , 20 , 18 ] := -2.2 ; let G[ 3 , 19 , 19 ] := 2.4 ; let G[ 3 , 18 , 20 ] := -2.2 ; let G[ 3 , 20 , 20 ] := 2.4 ; # Linear objectives g let g[ 1 , 1 ] := 0.023 ; let g[ 1 , 2 ] := -0.93 ; let g[ 1 , 3 ] := 1.9 ; let g[ 1 , 4 ] := 2.1 ; let g[ 1 , 5 ] := 5.5 ; let g[ 1 , 6 ] := -3.7 ; let g[ 1 , 7 ] := -4.7 ; let g[ 1 , 8 ] := 0.78 ; let g[ 1 , 9 ] := 5.6 ; let g[ 1 , 10 ] := -5.7 ; let g[ 1 , 11 ] := 4.4 ; let g[ 1 , 12 ] := -5.7 ; let g[ 1 , 13 ] := 0.23 ; let g[ 1 , 14 ] := -3.7 ; let g[ 1 , 15 ] := 2.6 ; let g[ 1 , 16 ] := -3 ; let g[ 1 , 17 ] := 5.2 ; let g[ 1 , 18 ] := -4.4 ; let g[ 1 , 19 ] := 0.26 ; let g[ 1 , 20 ] := 4.7 ; let g[ 2 , 1 ] := 5.3 ; let g[ 2 , 2 ] := -2 ; let g[ 2 , 3 ] := -0.75 ; let g[ 2 , 4 ] := -0.35 ; let g[ 2 , 5 ] := -4.2 ; let g[ 2 , 6 ] := -4.4 ; let g[ 2 , 7 ] := 0.39 ; let g[ 2 , 8 ] := 2.7 ; let g[ 2 , 9 ] := -1.2 ; let g[ 2 , 10 ] := -1.7 ; let g[ 2 , 11 ] := -2.6 ; let g[ 2 , 12 ] := 4.4 ; let g[ 2 , 13 ] := 1.5 ; let g[ 2 , 14 ] := -3.1 ; let g[ 2 , 15 ] := 5.7 ; let g[ 2 , 16 ] := 1.7 ; let g[ 2 , 17 ] := -3.2 ; let g[ 2 , 18 ] := 2.2 ; let g[ 2 , 19 ] := 2 ; let g[ 2 , 20 ] := -4.4 ; let g[ 3 , 1 ] := -5.7 ; let g[ 3 , 2 ] := -2.9 ; let g[ 3 , 3 ] := -4.6 ; let g[ 3 , 4 ] := -5.2 ; let g[ 3 , 5 ] := 4.2 ; let g[ 3 , 6 ] := -3.8 ; let g[ 3 , 7 ] := -5.6 ; let g[ 3 , 8 ] := 2.8 ; let g[ 3 , 9 ] := 0.44 ; let g[ 3 , 10 ] := -2.7 ; let g[ 3 , 11 ] := -1.6 ; let g[ 3 , 12 ] := -5.8 ; let g[ 3 , 13 ] := 4.7 ; let g[ 3 , 14 ] := 4.4 ; let g[ 3 , 15 ] := -2.9 ; let g[ 3 , 16 ] := 0.83 ; let g[ 3 , 17 ] := -4.1 ; let g[ 3 , 18 ] := 1.1 ; let g[ 3 , 19 ] := -2 ; let g[ 3 , 20 ] := 1.9 ; # Linear constraints matrix A let A[ 7 , 1 ] := -0.23 ; let A[ 8 , 1 ] := 1.3 ; let A[ 6 , 2 ] := 2.1 ; let A[ 8 , 2 ] := 1.4 ; let A[ 4 , 3 ] := 0.95 ; let A[ 9 , 4 ] := 1.9 ; let A[ 2 , 6 ] := 2.2 ; let A[ 2 , 7 ] := -3.2 ; let A[ 5 , 7 ] := 2.1 ; let A[ 7 , 7 ] := -2.4 ; let A[ 2 , 9 ] := -4 ; let A[ 4 , 10 ] := -3.9 ; let A[ 7 , 10 ] := 0.64 ; let A[ 10 , 10 ] := 0.031 ; let A[ 2 , 11 ] := 0.33 ; let A[ 5 , 11 ] := -0.95 ; let A[ 2 , 12 ] := -3.9 ; let A[ 4 , 12 ] := 3.1 ; let A[ 5 , 12 ] := -1.4 ; let A[ 1 , 13 ] := 0.49 ; let A[ 5 , 13 ] := 0.033 ; let A[ 6 , 13 ] := 2.2 ; let A[ 3 , 14 ] := 2.3 ; let A[ 3 , 10 ] := 2.11111 ; # to fix AMPL's presolve let A[ 4 , 14 ] := 2.1 ; let A[ 6 , 14 ] := -0.13 ; let A[ 8 , 14 ] := 3.5 ; let A[ 2 , 15 ] := -0.39 ; let A[ 2 , 17 ] := -2.4 ; let A[ 4 , 17 ] := 3.3 ; let A[ 9 , 17 ] := 2.9 ; let A[ 10 , 17 ] := 1 ; let A[ 5 , 18 ] := 0.52 ; let A[ 8 , 18 ] := 2.2 ; let A[ 6 , 19 ] := 2.4 ; let A[ 9 , 19 ] := 3.9 ; let A[ 1 , 20 ] := 1.2 ; # Linear constraints: rhs b let b[ 1 ] := 1.7 ; let b[ 2 ] := -11 ; let b[ 3 ] := 2.3 ; let b[ 4 ] := 1.4 ; let b[ 5 ] := 0.31 ; let b[ 6 ] := 1.8 ; let b[ 7 ] := -2 ; let b[ 8 ] := 1.1 ; let b[ 9 ] := 3.7 ; let b[ 10 ] := 1.1 ;