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General Form of a Semi-infinite
Program (SIP)

An objective function which is expressed in terms of a finite

number of optimization variables, x, is minimized subject to an

infinite number of constraints, which are expressed over a com-

pact set P of infinite cardinality:

min
x∈X

f(x)

g(x, p) ≤ 0 ∀p ∈ P ⊂ Rnp

|P | = ∞, X ⊂ Rnx

The global SIP algorithm makes additional mild assumptions

• P and X are Cartesian products of intervals

• f(x) is once-continuously differentiable in x

• g(x, p) is continuous in p and once-continuously differentiable

in x



SIP Example

min
x

x2

− (x1 − p)2 − x2 ≤ 0 ∀p ∈ [0,1]
0 ≤ x1 ≤ 1a

aHettich, R. and Kortanek, K.O.,
Semi-infinite Programming: The-
ory, Methods and Applications,
SIAM Review, 35:380-429, 1993.
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Engineering Applications

• Robotic trajectory planning

• Design and operation under uncertainty, robust solutions

• Material stress modeling

• Rigorous ranges of validity for (kinetic) models with para-

metric uncertainty



General Form of a SIP

min
x∈X

f(x)

g(x, p) ≤ 0 ∀p ∈ P ⊂ Rnp

|P | = ∞, X ⊂ Rnx



Exact Finite Reformulation

Numerical solution techniques for SIPs generally rely on con-

structing a finite reformulation to which known results and al-

gorithms from nonlinear programming (NLP) can be applied.

However, in the general case, the exact finite reformulation is

nonsmooth:

min
x∈X

f(x)

g̃(x) ≡ max
p∈P

g(x, p) ≤ 0

When f(x), and/or g(x, p) are nonconvex, this problem:

• Cannot be solved to global optimality using traditional non-

smooth optimization methods.

• May be solved to global optimality using bilevel programming

techniques - such an approach does not exploit the special

structure of the SIP.



Existing Numerical Methods for SIPs

Instead of solving the exact finite reformulation, an iterative al-

gorithm is used to generate a convergent sequence of upper or

lower bounds on the SIP solution.

• Lower-bounding approaches:

◦ Discretization

◦ Reduction

• Upper-bounding approach:

◦ Inclusion-constrained reformulation



Lower-Bounding Algorithms for SIPs

At each iteration, k,

• Select a finite subset of points Dk ⊂ P

• Formulate the following finitely-constrained subproblem:

min
x∈X

f(x)

g(x, p) ≤ 0 ∀p ∈ Dk

• Solving the subproblem to global optimality yields a rigorous

lower bound on the SIP minimum fSIP :

{x ∈ X : g(x, p) ≤ 0 ∀p ∈ Dk} ⊃ {x ∈ X : g(x, p) ≤ 0 ∀p ∈ P}
⇓

fSIP ≥ fD
k



Convergence of Lower-Bounding
Approaches

• Under appropriate assumptions:

◦ lim
k→∞

fD
k = fSIP

◦ Any accumulation point of the sequence {xk} ‘solves’ the

SIP, i.e., the algorithm converges to the ‘type’ of point

(global min/stationary point/KKT point) for which each

subproblem is solved.

• The feasibility of the solution cannot be guaranteed at finite

termination, even when subproblems are solved to global op-

timality.

• The feasibility of an incumbent solution xk can be tested by

solving a global maximization problem:

max
p∈P

g(xk, p)



Discretization-based Methods

• Require relatively mild assumptions on problem structure

• Each member set in the sequence {Dk} either postulated a

priori, or updated adaptively, e.g.

Dk+1 = Dk ∪ {p : p = argmax
p∈S

g(xk, p)}

S ⊂ P, |S| < ∞
• Computational cost increases rapidly with the dimen-

sionality of P and the number of iterations, k, since

lim
k→∞

sup
p1∈P

inf
p2∈Dk

||p1 − p2|| = 0 is required to guarantee con-

vergence of the method.

• In practice, global optimization methods are ignored, and

subproblems are solved only for stationary/KKT points

⇒ accumulation points of {xk} are stationary/KKT points

of the SIP, not global minima.



Reduction-based Methods

• Index set Dk+1 = {pl}k where {pl}k is the set of local maxi-

mizers of g(xk, p) on P .

• At each iteration, k, solve

min
x∈X∗

f(x)

g(x, pl(x)) ≤ 0 ∀l = 1, . . . , rl

where X∗ ⊂ X is a neighborhood of a SIP solution. Typically

neither the ‘valid’ neighborhood X∗, nor the number of local

maximizers, rl, are known explicitly.

• Convergence requires strong regularity conditions to be sat-

isfied

• ‘Local’ reduction methods require an initial starting point in

the vicinity X∗ of the SIP solution. Convergent ‘globalized’

reduction methods make even stronger assumptions.

• Computationally cheaper than discretization methods since

|Dk| = rl ∀k.



Example: Pathological Case

The feasible set cannot be rep-

resented by a finite number of

constraints from P

min
x

x2

− (x1 − p)2 − x2 ≤ 0 ∀p ∈ [0,1]
0 ≤ x1 ≤ 1

⇒ An upper bounding ap-

proach is required to identify

feasible solutions to such prob-

lems.
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Inclusion Functions

An inclusion for a function g(x, p) on an interval P can be calcu-

lated using interval analysis techniques such that this inclusion

G(x, P ) is a superset of the true image of the function g on P ,

i.e.,

{g(x, p) : p ∈ P} = [ḡb, ḡu] ⊂ [Gb, Gu] = G(x, P )

p

g
(x

,p
)

Gu

ḡu

ḡb

Gb

The natural interval extension is the simplest inclusion that can

be calculated for a continuous, real-valued function.



Upper-bounding Problem for the SIP

A subset of the SIP-feasible set may be represented using an

inclusion of g(x, p) on P :

{x ∈ X : max
p∈P

g(x, p) ≤ 0} ⊃ {x ∈ X : Gu(x, P ) ≤ 0}

This relation suggests the following finite, inclusion-constrained

reformulation (ICR), which may be solved for an upper bound

fICR ≥ fSIP :

min
x∈X

f(x)

Gu(x, P ) ≤ 0

Any local solution of this problem will be a SIP-feasible upper

bound.



Example

min
x∈X

1
3x2

1 + x2
2 + 1

2x1(
1− x2

1p2
)2
− x1p2 − x2

2 + x2 ≤ 0 ∀p ∈ [0,1]



Nonsmooth Reformulation

Min/Max terms which appear in the natural interval extension of

g(x, p) result in a nondifferentiable optimization problem (which

is nonetheless much easier to solve than the exact bilevel pro-

gramming formulation).

min
x∈X,pb∈P b,pu∈Pu

1
3x2

1 + x2
2 + 1

2x1

pb
2 = (pb

1)
2

pu
2 = (pu

1)
2

pb
3 = −x1 − 2x2

1 + x4
1 · p

b
2

pu
3 = −x1 − 2x2

1 + x4
1 · p

u
2

pu
4 = max

(
pu
2 · p

u
3, pb

2 · p
u
3, pb

2 · p
b
3, pu

2 · p
b
3

)
1 + x2 − x2

2 + pu
4 ≤ 0

pb
1 = 0, pu

1 = 1

• Solve the nonsmooth problem to local optimality using non-

differentiable optimization techniques, or

• Reformulate the nonsmooth problem as an equivalent

NLP/MINLP which may be solved to global optimality for a

(potentially) tighter upper bound on the SIP minimum value.



Solving the Inclusion-constrained
Reformulation to Global Optimality

Reformulation as equivalent smooth NLP

• No additional nonlinearities due to reformulation

• Problem size (number of constraints) grows exponentially

with the complexity of the constraint expression.

Reformulation as equivalent MINLP with smooth relaxations

• Binary variables introduce additional nonlinearities

• Problem size (number of binary variables) grows polynomi-

ally with the complexity of the constraint expression.



Results from Literature Examples

Problem fPCW max
p

g(xPCW , p) f ICR max
p

g(xICR, p) Gu CPU

1b -0.25 0 -0.25 0 0 0.03
2b 0.1945 −2.5 · 10−8 0.1945 −2.5 · 10−8 0 0.42
3b 5.3347 5.3 · 10−6 39.6287 -0.1233 0 0.06
4b(nx=3) 0.6490 −2.7 · 10−7 1.5574 -0.6505 0 0.02
4b(nx=6) 0.6161 0. 1.5574 0 0 0.03
4b(nx=8) 0.6156 0 1.5574 0 0 0.03
5b 4.3012 1.5 · 10−8 4.7183 0 0 0.05
6b 97.1588 −5.9 · 10−7 97.1588 5.7 · 10−6 0 0.09
7b 1 0 1 0 0 0.02
8b 2.4356 9.9 · 10−8 7.3891 −3.9 · 10−6 0 0.01
9b -12 0 -12 0 0 0.02
Kc -3 0 -3 0 0 0.02
Lc 0.3431 9.6 · 10−6 1 -0.2929 0 0.03
Mc 1 0 1 0 0 0.01
Nc 0 0 0 0 0 0.02
Sc(np = 3) -3.6743 -1.1640 -3.6406 -2.9997 0 0.33
Sc(np = 4) -4.0871 -1.1997 -4.0451 -0.7076 0 0.33
Sc(np = 5) -4.6986 -2.1733 -4.4496 -0.7619 0 0.27
Sc(np = 6) -5.1351 -2.6513 -4.8541 -2.6833 0 0.28
Uc -3.4831 2.4 · 10−8 -3.4822 -0.0002 0 0.03



Convergence Property of Inclusion
Functions

In the general case, the inclusion-constrained reformulation un-

derestimates the feasible set of the SIP such that fSIP < fICR.

A better approximation of the SIP-feasible set is necessary to

calculate a tighter upper bound for fSIP . The properties of

convergent inclusion functions can be exploited to derive tighter

inclusion bounds Gu(x, P ):

Gu(x, P )− ḡu(x, P ) ≤ γw(P )β

where w(P ) = pu − pb, β ≥ 1, and 0 ≤ γ < ∞.

Since Gu → gu as w(P ) ↓ and β ↑, tighter inclusions for the

constraint set are obtained using:

• Subdivision: Gu(x, P ) ≥ Gu
k(x, P ) ≥ ḡu(x, P ) where

Gk =
⋃

m∈Ik

G(x, Pk),
⋃

m∈Ik

Pk = P

• Higher order inclusion function, e.g. β = 2 for Taylor models



Convergence Results

Problem nx np ndivTM CPUTM ndivIE CPUIE

3b 3 1 16 172 512 291
4b 3 1 4 0.1 256 0.42
5b 3 1 2 0.40 16 0.16
Lc 2 1 16 0.68 512 60.48

• Higher-order Taylor models result in convergence over much

fewer iterations than natural interval extensions

• Fewer iterations (and correspondingly smaller NLP subprob-

lems) do not necessarily result in lower solution times for the

Taylor model formulations

• Reported CPU times do not reflect computational effort re-

quired to generate Taylor coefficients.
b G.A. Watson, Numerical Experiments with Globally Convergent Methods

forSemi-infinite Programming Problems, in Semi-Infinite Programming and

Applications, Proceedings of an International Symposium, Springer-Verlag,

Heidelberg, Germany, Eds. A.V. Fiacco and K.O. Kortanek, 1983.
c C.J. Price and I.D. Coope, Numerical Experiments in Semi-infinite Program-

ming, Computational Optimization and Applications, 6:169-189, 1996.



Global Optimization of SIPs

Existing lower and upper-bounding methods can be combined

in a branch-and-bound framework to solve SIPs to guaranteed

global optimality. The convergence of the branch-and-bound

alogorithm rests on two key results:

• Gu
k(x, P ) → ḡu(x, P ) as max

m∈Ik

w(Pm) → 0

• fD
k → fSIP as sup

p1∈P
inf

p2∈Dk

||p1 − p2|| → 0



Branch-and-Bound Framework

At each node solve

min
x∈Xi

fc(x)

gc(x, p) ≤ 0 ∀p ∈ Dq

min
x∈Xi

f(x)

Gu(x, Pm) ≤ 0 ∀m ∈ Iq

• fc, gc are convex relaxations of f and g respectively

• q is the level of the branch-and-bound tree at which the node

Xi ⊂ X occurs

• Dq is the discretization grid used to define the lower-bounding

problem for all nodes which occur at level q, Dq ⊂ Dq+1 ∀q

and lim
q→∞ sup

p1∈P
inf

p2∈Dq
||p1 − p2|| = 0

• {Pm} is the partition of P used to define the upper-bounding

problem for all nodes which occur at level q,

max
m∈Iq

w(Pm) > max
m∈Iq+1

w(Pm+1) ∀q, lim
q→∞max

m∈Iq
w(Pm) = 0



Exclusion Heuristic

Upper-bounding problem:

Exclude subintervals Pm, m ∈
Iq which generate inactive con-

straints at a node Xi ⊂ X

and its child nodes, i.e., those

which satisfy

Gu(Xi, Pm) < 0

Lower-bounding problem:

Exclude points p ∈ Dq which

generate inactive constraints

at a node Xi ⊂ X and its child

nodes, i.e., those which satisfy

Gu
c (Xi, p) < 0
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Conclusions

• The inclusion-constrained reformulation can be used to iden-

tify feasible upper bound to the SIP solution value by solving

a finite number of NLPs to local optimality (usually one). In

many applications feasibility is more important than optimal-

ity.

• The inclusion-constrained reformulation yields a convergent

sequence of upper bounds on the SIP solution value.

• When multiple iterations are required, the convergence rate

of the inclusion-constrained reformulation is significantly im-

proved by the use of higher-order inclusion functions.

• The SIP branch-and-bound framework enables the solution

of general, nonlinear SIPs to finite ε-optimality by combining

existing uppper and lower-bounding approaches for SIPs.


