A Triangular-Based Branch and Bound Method for Nonconvex Quadratic Programming and the Computational Grid

JEFF LINDEROTH

Industrial and Systems Engineering
Lehigh University
jtl3@lehigh.edu

How This Talk Came to Be...

January 9, 2003

''We're thinking of writing an NSF proposal. What are you working on these days, Jeff?',
'' I have begun preliminary work on a branch-and-bound method for a global
 optimization problem that relies on (convex) quadratic relaxations. Having a simple API to be able to build the nonlinear relaxations on the fly during the branch-and-bound process would be something very useful for this problem''

The Fundamental Theorem of email

Theorem 1.

Mentioning a topic off-handedly in email about a subject you are planning on pursuing in research does not make you an expert in the field.

Theorem 2.
Mentioning by email that you "have begun preliminary work" on a subject doesn't mean that you will have anything useful to say about that subject in nine months

Proofs. (By picture)

Jeff's Main Summer Activities

Golf

Feeding New Son Jacob

* Parallel B\&B for (non) convex QCQP not a top summer priority

Outline

- Nonconvex Quadratic Programming
\diamond Relaxations with convex/concave envelopes of bilinear functions
\diamond Formulae for envelopes over triangles
\diamond Why triangles are good
\diamond How not to solve the resulting relaxations
- The Computational Grid
\diamond Brief Introduction
\diamond Branch-and-bound on the Computational Grid
\diamond The Quadratic Assignment Problem
\diamond Special challenges for branch-and-bound methods for non-discrete problems on the computational grid

(Nonconvex) QCQP

$$
\min _{x \in \Re \Re^{n}} q_{0}(x)
$$

subject to

$$
\begin{aligned}
q_{k}(x) & \geq b_{k} \quad \forall k \in \mathcal{I} \\
q_{k}(x) & =b_{k} \quad \forall k \in \mathcal{E} \\
x & \leq u \\
x & \geq l
\end{aligned}
$$

where

$$
q_{k}(x)=\left(c^{k}\right)^{T} x+x^{T} Q^{k} x \quad \forall k \in\{0 \cup \mathcal{I} \cup \mathcal{E}\}
$$

- l and u are finite
- $q_{k}(x)$ could be convex, concave, or nonconvex

Caution

- I'm certainly not an expert in this area.
- I do know that these problems are very hard from a computational standpoint
\diamond QCQP generalizes integer programming and lots of other hard problems.
\diamond Problems with a tens of variables (or tens of quadratic terms) are about the limit of what can be solved
\star Solving these problems may require a large amount of computing resources-The computational grid!

Solving QCQP

- Popular (best) method is to use convex and concave envelopes.
- Consider quadratic term $x_{i} x_{j}$, for $\left(x_{i}, x_{j}\right) \in \Omega \equiv\left[l_{i}, u_{i}\right] \times\left[l_{j}, u_{j}\right]$.
$\diamond x_{i} x_{j} \geq \max \left\{l_{i} x_{j}+l_{j} x_{i}-l_{i} l_{j}, u_{i} x_{j}+u_{j} x_{i}-u_{i} u_{j}\right\}$
$\diamond x_{i} x_{j} \leq \min \left\{l_{i} x_{j}+u_{j} x_{i}-l_{i} u_{j}, u_{i} x_{j}+l_{j} x_{i}-u_{i} l_{j}\right\}$
- These functions are (resp.) the convex and concave envelope of the function $x_{i} x_{j}$ over $\left[l_{i}, u_{i}\right] \times\left[l_{j}, u_{j}\right]$. (McCormick '76, Al-Khayyal and Falk, '83)
- $\operatorname{vex}_{\Omega}(f)$-Convex Envelope of f over Ω-Pointwise supremum of convex underestimators of f over Ω.
- $\operatorname{cav}_{\Omega}(f)$-Concave Envelope of f over Ω-Pointwise infimum of concave overestimators of f over Ω.

(LP) Relaxation of QCQP

$$
\min _{l \leq x \leq u} \sum_{i=1}^{n} c_{i}^{0} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}^{0} z_{i j}
$$

subject to

$$
\begin{array}{rll}
\sum_{i=1}^{n} c_{i}^{k} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}^{k} z_{i j} & \geq b_{k} & \forall k \in \mathcal{I} \\
\sum_{i=1}^{n} c_{i}^{k} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}^{k} z_{i j} & =b_{k} & \forall k \in \mathcal{E} \\
z_{i j}-l_{i} x_{j}-l_{j} x_{i}+l_{i} l_{j} & \geq 0 & \forall i=1, \ldots, n, j=1, \ldots, n \\
z_{i j}-u_{i} x_{j}-u_{j} x_{i}+u_{i} u_{j} & \geq 0 & \forall i=1, \ldots, n, j=1, \ldots, n \\
z_{i j}-l_{i} x_{j}-u_{j} x_{i}+l_{i} u_{j} & \leq 0 & \forall i=1, \ldots, n, j=1, \ldots, n \\
z_{i j}-u_{i} x_{j}-l_{j} x_{i}+u_{i} l_{j} & \leq 0 & \forall i=1, \ldots, n, j=1, \ldots, n
\end{array}
$$

Worth 1000 Words?—Part I

Worth 1000 Words? -Part II

$\max (0, x+y-1)=$
(min $(x, y))$

$\operatorname{cav}\left(x_{i} x_{j}\right)$

Branching

- In LP relaxation, $z_{i j}=x_{i} x_{j} \forall x_{i}, x_{j} \in \partial \Omega$.
- If $z_{i j} \neq x_{i} x_{j}$, we branch. Two suggested branching schemes

Triangle-Based Branching

- I'd like to propose a triangular-based branching scheme...

- In order to do this, we need formulae for $\operatorname{cav}_{A, B, C, D}\left(x_{i} x_{j}\right)$ and $\operatorname{vex}_{A, B, C, D}\left(x_{i} x_{j}\right)$

Concave Envelope Formulae

$$
\begin{aligned}
& \text { Let } A B=\Omega \cap\left\{\left(x_{i}, x_{j}\right) \left\lvert\, x_{j}-u_{j} \leq \frac{l_{j}-u_{j}}{u_{i}-l_{i}}\left(x_{i}+l_{i}\right)\right.\right\} \\
& \text { Let } C D=\Omega \cap\left\{\left(x_{i}, x_{j}\right) \left\lvert\, x_{j}-u_{j} \geq \frac{l_{j}-u_{j}}{u_{i}-l_{i}}\left(x_{i}+l_{i}\right)\right.\right\} \\
& \operatorname{Cav}_{A B}\left(x_{i} x_{j}\right)=\left\{\begin{array}{cc}
l_{i} l_{j} & \text { if } x_{i}=l_{i}, x_{j}=l_{j} \\
\frac{c_{0}+c_{i} x_{i}+c_{j} x_{j}+c_{i j} x_{i} x_{j}+c_{i} 2 x_{i}^{2}+c_{j} x_{j}^{2}}{d_{0}+d_{i} x_{i}+d_{j} x_{j}} & \text { Otherwise }
\end{array}\right. \\
& \operatorname{Cav}_{C D}\left(x_{i} x_{j}\right)=\left\{\begin{array}{cc}
u_{i} u_{j} & \text { if } x_{i}=u_{i}, x_{j}=u_{j} \\
\frac{c_{0}+c_{i} x_{i}+c_{j} x_{j}+c_{i j} x_{i} x_{j}+c_{i 2} x_{i}^{2}+c_{j^{2}} x_{j}^{2}}{d_{0}+d_{i} x_{i}+d_{j} x_{j}} & \text { Otherwise }
\end{array}\right.
\end{aligned}
$$

Messy Definitions for Completeness

Coef.	$\operatorname{cav}_{A B}$	$\operatorname{cav}_{C D}$
c_{0}	$-l_{i}^{2} l_{j}^{2}+l_{i} l_{j} u_{i} u_{j}$	$u_{i}^{2} u_{j}^{2}-l_{i} l_{j} u_{i} u_{j}$
c_{i}	$-l_{i} l_{j} u_{j}-l_{j} u_{i} u_{j}+2 l_{j}^{2} l_{i}$	$-2 u_{j}^{2} u_{i}+l_{j} u_{i} u_{j}+l_{i} l_{j} u_{j}$
c_{j}	$-l_{i} l_{j} u_{i}-l_{i} u_{i} u_{j}+2 l_{i}^{2} l_{j}$	$-2 u_{i}^{2} u_{j}+l_{i} u_{i} u_{j}+l_{i} l_{j} u_{i}$
$c_{i j}$	$u_{i} u_{j}-l_{i} l_{j}$	$u_{i} u_{j}-l_{i} l_{j}$
$c_{i^{2}}$	$l_{j} u_{j}-l_{j}^{2}$	$u_{j}^{2}-l_{j} u_{j}$
$c_{j^{2}}$	$l_{i} u_{i}-l_{i}^{2}$	$u_{i}^{2}-l_{i} u_{i}$
d_{0}	$-l_{i} u_{j}-u_{i} l_{j}+2 l_{i} l_{j}$	$-2 u_{i} u_{j}+l_{i} u_{j}+l_{j} u_{i}$
d_{i}	$u_{j}-l_{j}$	$u_{j}-l_{j}$
d_{j}	$u_{i}-l_{i}$	$u_{i}-l_{i}$

Now Vex

- You can likewise derive formulae for $\operatorname{vex}_{B C}\left(x_{i} x_{j}\right)$ and $\operatorname{vex}_{A D}\left(x_{i} x_{j}\right)$
- I won't bore you with the formulae. For $\Omega=[0,1] \times[0,1]$,

$$
\begin{gathered}
\operatorname{vex}_{B C}\left(x_{i} x_{j}\right)=\frac{x_{i}^{2}}{x_{i}-x_{j}+1} \\
\operatorname{vex}_{A D}\left(x_{i} x_{j}\right)=\frac{x_{j}^{2}}{-x_{i}+x_{j}+1}
\end{gathered}
$$

cav Pics

$\left(x^{*} y\right) /(x+y)=$

$\operatorname{cav}_{A B}\left(x_{i} x_{j}\right)$
$\left(1-2^{*} x-2^{*} y+x^{*} y+x^{*} x+y^{*} y\right) /(x+y-2)$

$\operatorname{cav}_{C D}\left(x_{i} x_{j}\right)$

This Just In...

- Recall, I said I was not an expert...
- The convex envelope formulae appeared implictly in [Sherali and Alameddine ' 90].
- They said they were planning on developing an algorithm using these results, but I don't think they ever did.
* I claim that this would be a very good idea.

Why Triangles Are Good

- Just like integer programming (and maybe even more so), a relaxation is good if it is tight.
* In this case, we can explicity calculate a meaningful measure of relaxation goodness (η) over an arbitrary region Γ.

$$
\eta_{\Gamma}=\int_{\Gamma}\left(\operatorname{cav}_{\Gamma}\left(x_{i} x_{j}\right)-\operatorname{vex}_{\Gamma}\left(x_{i} x_{j}\right)\right) d x_{i} d x_{j}
$$

Branching Schemes

- For Example: $\left(x_{i}, x_{j}\right) \in[0,2] \times[0,2]$. Consider two branching schemes...

$$
\begin{aligned}
\eta_{[0,2] \times[0,2]} & =8 / 3 \\
\eta_{\text {Rectangle }}=\eta_{I}+\eta_{I I}+\eta_{I I I}+\eta_{I V} & =2 / 3 \\
\eta_{\text {Triangle }}=\eta_{A}+\eta_{B}+\eta_{C}+\eta_{D} & =4 / 9
\end{aligned}
$$

- A branch-and-bound algorithm based on triangular subdivisions may be quite good!

Barriers to Triangular B\&B Algorithm

- How to (easily, at least for prototyping purposes) interface $\mathrm{B} \& \mathrm{~B}$ C+ + driver code with existing NLP software to solve relaxations?
* COIN to the rescue!
\diamond NLPAPI (a very recent addition to COIN) is a C API to NLP software.
- Lancelot
- IPOPT—Very, very, very recently (like three days ago)
- This is great, but there is a more fundamental barrier to using NLP in a B\&B algorithm...

NLP Stinks!

- NLP is quite slow.
\diamond This is largely a function of NLPAPI/Lancelot
\diamond The entire problem is built from scratch every time, writing out SIF files, before calling Lancelot
- NLP is sometimes wrong(!?!?!)
- The envelope functions are not differentiable everywhere on the boundary.
- They have the "wrong" curvature outside of the region of interest
- NLP sometime says, "I don't think your problem has a feasible solution, but I'm not too sure."

It's Probably My Fault

- NLP doesn't stink. I just couldn't resist putting up that slide.
- It's the wrong hammer for the job.
- The envelope functions I presented have a second-order cone representation.
\diamond Thanks go to Kurt Anstreicher for making me believe that there really was a SOC representation of the envelope functions
\diamond Thanks go to Masakazu Muramatsu for showing me how these things work.

Ice Cream Cone (Symmetric Cone) Programming

$$
\min \left\{c^{T} x \mid A x=b, x \in \mathcal{K}\right\}
$$

- $\mathcal{K} \subset \Re^{n}$ is a symmetric cone
- Quadratic cone in \Re^{n} :

$$
\mathcal{K}_{q}^{n}=\left\{x \in \Re^{n}: x_{1} \geq \sqrt{\sum_{i=2}^{n} x_{i}^{2}}\right\}
$$

- SOCP has a nice duality theory - It can tell me (with confidence) that a problem is infeasible
- SOCP solvers are robust
- I think it should reasonable to embed a SOCP (or even an SDP) solver into a branch and bound algorithm.

SOC Representation (Example)

- Imagine $\Omega=[0,1] \times[0,1]$
- Restrict $\left(x_{i}, x_{j}\right) \in B \equiv\left\{\left(x_{i}, x_{j}\right) \mid x_{i} \leq x_{j}, x_{i}+x_{j} \leq 1\right\}$
$\Rightarrow z_{i j} \geq \frac{x_{i}^{2}}{x_{i}-x_{j}+1}, z_{i j} \leq \frac{x y}{x+y}$

$$
\begin{aligned}
z_{i j} \geq \frac{x_{i}^{2}}{x_{i}-x_{j}+1},\left(x_{i}, x_{j}\right) \in B & \Leftrightarrow\left[\begin{array}{c}
z_{i j}+1-x_{j}+x_{i} \\
2 x_{i} \\
z_{i j}-1+x_{j}-x_{i}
\end{array}\right] \in \mathcal{K}_{q}^{3} \\
z_{i j} \leq \frac{x y}{x+y},\left(x_{i}, x_{j}\right) \in B & \Leftrightarrow\left[\begin{array}{c}
2 x_{i}+x_{j}-z_{i j} \\
2 x_{i} \\
-x_{j}-z_{i j}
\end{array}\right] \in \mathcal{K}_{q}^{3}
\end{aligned}
$$

Wake Up!

- I am going to start talking about "The Grid"-Probably a more interesting topic

The Computational Grid

''A Grid is a hardware and software infrastructure that provides dependable, consistent, and pervasive access to resources to enable sharing of computational resources',

- Analogy is to power grid
\diamond Computational resources are ubiquitous
\diamond Their use could/should be transparent to the user

Building a Grid

- There have been lots of software tools that provide necessary grid services...
\diamond Resource scheduling
\diamond Fault-detection
\diamond Remote execution
- One problem remains: GREED!
\diamond Most people don't want to contribute "their" machine!
* Condor is used to build the Grid!

What is Condor?

- Manages collections of "distributively owned" workstations
\diamond User need not have an account or access to the machine
\diamond Workstation owner specifies conditions under which jobs are allowed to run-Jobs must vacate when user claims machine!
\diamond All jobs are scheduled and "fairly" allocated among the pool
- How does it do this?
\diamond Scheduling/Matchmaking
\diamond Jobs can be checkpointed and migrated
\diamond Remote system calls provide the originating machines environment

Grid-Enabled B\&B

- Condor gives us the infrastructure from which to build a grid (the spare CPU cycles),
- We still need a mechanism for controlling the branch-and-bound process on the Grid
- Don't lose a portion of the branch-and-bound tree when a process vacates
- Do make use of additional resources as they come online
* To make parallel branch-and-bound fault-tolerant, we could (should?) use the master-worker paradigm
- What is the master-worker paradigm, you ask?

- Master assigns tasks to the workers
- Workers perform tasks, and report results back to master
- Workers do not communicate (except through the master)

MW

- Goux, Kulkarni, Linderoth, Yoder
- A set of abstract C++ classes
- User writes 10 functions
- MW...
\diamond Interacts with resource management software (Condor)
\diamond Interacts with message passing software (PVM, Files)
\diamond Ensures that all tasks are scheduled and completed
\diamond All these complexities are hidden from the user
* I'm actively looking for new users and suggestions for additional functionality

MWInterface

- MWMaster
\diamond get_userinfo()
\diamond setup_initial_tasks()
\diamond pack_worker_init_data()
\diamond act_on_completed_task()
- MWTask
\diamond (un)pack_work
\diamond (un) pack_result
- MWWorker
\diamond unpack_worker_init_data()
\diamond execute_task()

MWApplications

- MWMINLP (Goux, Leyffer, Nocedal) - A branch and bound code for nonlinear integer programming
- MWLShaped (Linderoth, Shapiro, Wright) - A cutting plane and verification code for linear stochastic programming
- FATCOP (Chen, Ferris, Linderoth) - A branch and cut code for linear integer programming
- MWQAP (Anstreicher, Brixius, Goux, Linderoth) - A branch and bound code for solving the quadratic assignment problem
- MWQPBB (Linderoth) - The rudimentary, incomplete, nonsensical code I currently working on
- ... (Your application here) ...

The Quadratic Assignment Problem

$$
\min _{\pi \in \Pi} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{\pi(i) \pi(j)}+\sum_{i=1}^{n} c_{i \pi(i)}
$$

- QAP is NP-"Super"-hard.
\diamond TSP : $n>16,000$
\diamond QAP : $n=25$
- Branch and Bound is the method of choice, but very few tight, computable, bounds exist.

Features of QAP B\&B Algorithm

- Convex quadratic programming relaxation.
\diamond Solved using Frank-Wolfe algorithm.
- Use "polytomic" branching, based on one facility or one location.
- Exploit symmetry in branching
- Uses (extensively) strong branching:
\diamond Tentatively branch on each facility/location to see which branching choice will be best
- Implement using MW to run on the Computational Grid

MW Implementation

- Fitting the B \& B algorithm into the master-worker paradigm is not groundbreaking research
- We must avoid "contention" at the master

All The Queueing Theory I Know

- We can reduce contention in two ways

1. Increase the service rate
2. Reduce the arrival rate

* A parallel depth-first oriented strategy achieves these goals.
\diamond Available worker is given "deepest" node by master
\diamond Worker examines the subtree rooted at this node in a depth-first fashion for t seconds.

The Holy Grail!

- (NUG30) ($n=30$) has been the "holy-grail" of computational QAP research for > 30 years
- Using an old idea of Knuth, we estimated the CPU time required to solve NUG30 to be 5-10 years on a fast workstation
\Rightarrow We'd better get a pretty big Grid!

Our Computational Grid

Number	Type	Location
414	Intel/Linux	Argonne
96	SGI/Irix	Argonne
1024	SGI/Irix	NCSA
16	Intel/Linux	NCSA
45	SGI/Irix	NCSA
246	Intel/Linux	Wisconsin
146	Intel/Solaris	Wisconsin
133	Sun/Solaris	Wisconsin
190	Intel/Linux	Georgia Tech
94	Intel/Solaris	Georgia Tech
54	Intel/Linux	Italy (INFN)
25	Intel/Linux	New Mexico
5	Intel/Linux	Columbia U.
10	Sun/Solaris	Columbia U.
12	Sun/Solaris	Northwestern
2510		

NUG30 is solved!

$14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,6,20,19,8,18,7,27,12,11,23$
"My father Used 3.46×10^{8} CPU SECONDS, AND ALL I GOT WAS THIS LOUSY PERMUTATION"

Wall Clock Time:	$6: 22: 04: 31$
Avg. \# Machines:	653
CPU Time:	≈ 11 years
Nodes:	$11,892,208,412$
LAPs:	$574,254,156,532$
Parallel Efficiency:	92%

Workers

KLAPS

Parallel DFS worked Great for QAP

- Kept up to 1000 workers busy $>90 \%$ of the time in a very dynamic grid environment
- We knew a priori a very good solution
- Tree depth was bounded

Problems with DFS for Global Optimization

- Tree depth not bounded!
- B\&B algorithms may not converge unless you search nodes in a best first fashion (or at least you have to branch on the node with the best lower bound "every once in a while").
- We may not know a good solution
* Use NLP solvers to try and find feasible (locally optimal) solution

How Bad Can Depth-First Search Be?

Ex: Nonconvex quadratic programming formulation of max clique problem on ten nodes.
\diamond Naive implementation
\diamond Two-way rectangular branching

- Depth-First Search—> 3, 000, 000 nodes
- Best-First Search- $\approx 30,000$ nodes

How Bad Can Best-First Search Be?

Ex: Nonconvex quadratic programming formulation of max clique problem on 200 nodes.
\diamond Naive MW (Parallel) Implementation running on a Computational Grid of around 100 nodes

- Master processes crashes, since the number of nodes in the list exhausts the computer memory (1 GB).
- Huge unexplored subtree messages passed from Workers to Master

Conclusions

This page intentionally left blank

The Future of Global Optimization

Disclaimer: This really comes from the perspective of an integer programmer - not someone intimately in touch with the field!

- I think that many of the great advances in deterministic global optimization have come by including more IP technology into the solvers
- But I think maybe more could be done!
\diamond Cutting Planes
\diamond Nonlinear inequalities?
\diamond Can one use RLT (Sherali et. al) cuts in a "separate-when-needed" manner
\diamond Strong Branching
\diamond Stronger $_{\text {Preprocessing }}$
- Run it on the Grid!

(My) Future Work

- Implement SOCP relaxations.
- Add obvious (but very important) bells-and-whistles to current code.
\diamond Strong Preprocessing
\diamond Strong Branching
- How to balance depth-first with best-first search on the Grid?
- Try to solve some big instances!
\diamond I'm here looking for big, unsolved, interesting problems!

