
A Triangular-Based Branch and Bound Method for
Nonconvex Quadratic Programming and the

Computational Grid

JEFF LINDEROTH

Industrial and Systems Engineering
Lehigh University
jtl3@lehigh.edu

ARGONNE GLOBAL OPTIMIZATION THEORY INSTITUTE SEPTEMBER 9, 2003

How This Talk Came to Be...

January 9, 2003

‘‘We’re thinking of writing an NSF

proposal. What are you working on

these days, Jeff?’’

‘‘I have begun preliminary work on a

branch-and-bound method for a global

optimization problem that relies on

(convex) quadratic relaxations.

Having a simple API to be able to

build the nonlinear relaxations on

the fly during the branch-and-bound

process would be something very

useful for this problem’’

The Fundamental Theorem of email

Theorem 1.
Mentioning a topic off-handedly in email about a subject you are
planning on pursuing in research does not make you an expert in
the �eld.
Theorem 2.
Mentioning by email that you �have begun preliminary work� on a
subject doesn't mean that you will have anything useful to say
about that subject in nine months
Proofs. (By picture)

Q.E.D.

Jeff's Main Summer Activities

Golf Feeding New Son Jacob

? Parallel B&B for (non)convex QCQP not a top summer priority

Outline

• Nonconvex Quadratic Programming
¦ Relaxations with convex/concave envelopes of bilinear

functions
¦ Formulae for envelopes over triangles
¦ Why triangles are good
¦ How not to solve the resulting relaxations

• The Computational Grid
¦ Brief Introduction
¦ Branch-and-bound on the Computational Grid
¦ The Quadratic Assignment Problem

¦ Special challenges for branch-and-bound methods for
non-discrete problems on the computational grid

(Nonconvex) QCQP

min
x∈<n

q0(x)

subject to

qk(x) ≥ bk ∀k ∈ I
qk(x) = bk ∀k ∈ E

x ≤ u

x ≥ l

where

qk(x) = (ck)T x + xT Qkx ∀k ∈ {0 ∪ I ∪ E}
• l and u are �nite
• qk(x) could be convex, concave, or nonconvex

Caution

• I'm certainly not an expert in this area.

• I do know that these problems are very hard from a
computational standpoint
¦ QCQP generalizes integer programming and lots of other

hard problems.
¦ Problems with a tens of variables (or tens of quadratic

terms) are about the limit of what can be solved

? Solving these problems may require a large amount of
computing resources�The computational grid!

Solving QCQP

• Popular (best?) method is to use convex and concave envelopes.

• Consider quadratic term xixj , for (xi, xj) ∈ Ω ≡ [li, ui]× [lj , uj].
¦ xixj ≥ max{lixj + ljxi − lilj , uixj + ujxi − uiuj}
¦ xixj ≤ min{lixj + ujxi − liuj , uixj + ljxi − uilj}

• These functions are (resp.) the convex and concave envelope of
the function xixj over [li, ui]× [lj , uj]. (McCormick '76,
Al-Khayyal and Falk, '83)

• vexΩ(f)�Convex Envelope of f over Ω�Pointwise supremum
of convex underestimators of f over Ω.

• cavΩ(f)�Concave Envelope of f over Ω�Pointwise in�mum of
concave overestimators of f over Ω.

(LP) Relaxation of QCQP

min
l≤x≤u

nX
i=1

c0
i xi +

nX
i=1

nX
j=1

Q0
ijzij

subject to
nX

i=1

ck
i xi +

nX
i=1

nX
j=1

Qk
ijzij ≥ bk ∀k ∈ I

nX
i=1

ck
i xi +

nX
i=1

nX
j=1

Qk
ijzij = bk ∀k ∈ E

zij − lixj − ljxi + lilj ≥ 0 ∀i = 1, . . . , n, j = 1, . . . , n

zij − uixj − ujxi + uiuj ≥ 0 ∀i = 1, . . . , n, j = 1, . . . , n

zij − lixj − ujxi + liuj ≤ 0 ∀i = 1, . . . , n, j = 1, . . . , n

zij − uixj − ljxi + uilj ≤ 0 ∀i = 1, . . . , n, j = 1, . . . , n

Worth 1000 Words?�Part I

x*y

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

xixj

Worth 1000 Words?�Part II

max(0,x+y-1)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

vex(xixj)

(min(x,y))

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

cav(xixj)

Branching

• In LP relaxation, zij = xixj ∀xi, xj ∈ ∂Ω.

• If zij 6= xixj , we branch. Two suggested branching schemes

III

I II

IVIII

Triangle-Based Branching

• I'd like to propose a triangular-based branching scheme...

B D

A

C

• In order to do this, we need formulae for cavA,B,C,D(xixj) and
vexA,B,C,D(xixj)

Concave Envelope Formulae

Let AB = Ω ∩ {(xi, xj)|xj − uj ≤ lj − uj

ui − li
(xi + li)}

Let CD = Ω ∩ {(xi, xj)|xj − uj ≥ lj − uj

ui − li
(xi + li)}

CavAB(xixj) =

lilj if xi = li, xj = lj
c0+cixi+cjxj+cijxixj+ci2x2

i +cj2x2
j

d0+dixi+djxj
Otherwise

CavCD(xixj) =

uiuj if xi = ui, xj = uj

c0+cixi+cjxj+cijxixj+ci2x2
i +cj2x2

j

d0+dixi+djxj
Otherwise

Messy De�nitions for Completeness

Coef. cavAB cavCD

c0 −l2i l
2
j + liljuiuj u2

i u
2
j − liljuiuj

ci −liljuj − ljuiuj + 2l2j li −2u2
jui + ljuiuj + liljuj

cj −liljui − liuiuj + 2l2i lj −2u2
i uj + liuiuj + liljui

cij uiuj − lilj uiuj − lilj

ci2 ljuj − l2j u2
j − ljuj

cj2 liui − l2i u2
i − liui

d0 −liuj − uilj + 2lilj −2uiuj + liuj + ljui

di uj − lj uj − lj

dj ui − li ui − li

Now Vex

• You can likewise derive formulae for vexBC(xixj) and
vexAD(xixj)

• I won't bore you with the formulae. For Ω = [0, 1]× [0, 1],

vexBC(xixj) =
x2

i

xi − xj + 1

vexAD(xixj) =
x2

j

−xi + xj + 1

cav Pics

(x*y)/(x+y)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

cavAB(xixj)

(1-2*x-2*y+x*y+x*x+y*y)/(x+y-2)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

cavCD(xixj)

This Just In...

• Recall, I said I was not an expert...

• The convex envelope formulae appeared implictly in [Sherali
and Alameddine '90].

• They said they were planning on developing an algorithm using
these results, but I don't think they ever did.

? I claim that this would be a very good idea.

Why Triangles Are Good

• Just like integer programming (and maybe even more so), a
relaxation is good if it is tight.

? In this case, we can explicity calculate a meaningful measure of
relaxation goodness (η) over an arbitrary region Γ.

ηΓ =
∫

Γ

(cavΓ(xixj)− vexΓ(xixj))dxidxj .

Branching Schemes

• For Example: (xi, xj) ∈ [0, 2]× [0, 2]. Consider two branching
schemes...

I

II III

IV

B D

A

C

η[0,2]×[0,2] = 8/3

ηRectangle = ηI + ηII + ηIII + ηIV = 2/3

ηTriangle = ηA + ηB + ηC + ηD = 4/9

• A branch-and-bound algorithm based on triangular subdivisions may
be quite good!

Barriers to Triangular B&B Algorithm

• How to (easily, at least for prototyping purposes) interface B&B
C++ driver code with existing NLP software to solve
relaxations?

? COIN to the rescue!
¦ NLPAPI (a very recent addition to COIN) is a C API to NLP

software.
• Lancelot
• IPOPT�Very, very, very recently (like three days ago)

• This is great, but there is a more fundamental barrier to using
NLP in a B&B algorithm...

NLP Stinks!

• NLP is quite slow.
¦ This is largely a function of NLPAPI/Lancelot
¦ The entire problem is built from scratch every time, writing

out SIF �les, before calling Lancelot

• NLP is sometimes wrong(!?!?!)
• The envelope functions are not differentiable everywhere on

the boundary.
• They have the �wrong� curvature outside of the region of

interest
• NLP sometime says, �I don't think your problem has a

feasible solution, but I'm not too sure.�

It's Probably My Fault

• NLP doesn't stink. I just couldn't resist putting up that slide.

• It's the wrong hammer for the job.

• The envelope functions I presented have a second-order cone
representation.
¦ Thanks go to Kurt Anstreicher for making me believe that

there really was a SOC representation of the envelope
functions

¦ Thanks go to Masakazu Muramatsu for showing me how
these things work.

Ice Cream Cone (Symmetric Cone) Programming

min{cT x|Ax = b, x ∈ K}
• K ⊂ <n is a symmetric cone
• Quadratic cone in <n :

Kn
q =

x ∈ <n : x1 ≥

√√√√
n∑

i=2

x2
i

• SOCP has a nice duality theory � It can tell me (with
con�dence) that a problem is infeasible

• SOCP solvers are robust
• I think it should reasonable to embed a SOCP (or even an SDP)

solver into a branch and bound algorithm.

SOC Representation (Example)

• Imagine Ω = [0, 1]× [0, 1]

• Restrict (xi, xj) ∈ B ≡ {(xi, xj)|xi ≤ xj , xi + xj ≤ 1}
⇒ zij ≥ x2

i

xi−xj+1 , zij ≤ xy
x+y

zij ≥ x2
i

xi − xj + 1
, (xi, xj) ∈ B ⇔

zij + 1− xj + xi

2xi

zij − 1 + xj − xi

 ∈ K3

q

zij ≤ xy

x + y
, (xi, xj) ∈ B ⇔

2xi + xj − zij

2xi

−xj − zij

 ∈ K3

q

Wake Up!

• I am going to start talking about �The Grid��Probably a more
interesting topic

The Computational Grid

‘‘A Grid is a hardware and software infrastructure that

provides dependable, consistent, and pervasive access to

resources to enable sharing of computational resources’’

• Analogy is to power grid
¦ Computational resources are ubiquitous
¦ Their use could/should be transparent to the user

Building a Grid

• There have been lots of software tools that provide necessary
grid services...
¦ Resource scheduling
¦ Fault-detection
¦ Remote execution

• One problem remains: GREED!
¦ Most people don't want to contribute �their� machine!

? Condor is used to build the Grid!

What is Condor?

• Manages collections of �distributively owned� workstations
¦ User need not have an account or access to the machine
¦ Workstation owner speci�es conditions under which jobs are

allowed to run�Jobs must vacate when user claims
machine!

¦ All jobs are scheduled and �fairly� allocated among the pool

• How does it do this?
¦ Scheduling/Matchmaking
¦ Jobs can be checkpointed and migrated
¦ Remote system calls provide the originating machines

environment

Grid-Enabled B&B

• Condor gives us the infrastructure from which to build a grid
(the spare CPU cycles),

• We still need a mechanism for controlling the
branch-and-bound process on the Grid

• Don't lose a portion of the branch-and-bound tree when a
process vacates

• Do make use of additional resources as they come online

? To make parallel branch-and-bound fault-tolerant, we could
(should?) use the master-worker paradigm

• What is the master-worker paradigm, you ask?

Master

←−
−−

Fee
d Me! Tutor me! −−−→

Worker Worker

• Master assigns
tasks to the
workers

• Workers perform
tasks, and report
results back to
master

• Workers do not
communicate
(except through
the master)

MW

� Goux, Kulkarni, Linderoth, Yoder

• A set of abstract C++ classes

• User writes 10 functions

• MW...
¦ Interacts with resource management software (Condor)
¦ Interacts with message passing software (PVM, Files)
¦ Ensures that all tasks are scheduled and completed
¦ All these complexities are hidden from the user

? I'm actively looking for new users and suggestions for
additional functionality

MWInterface

• MWMaster
¦ get userinfo()

¦ setup initial tasks()

¦ pack worker init data()

¦ act on completed task()

• MWTask
¦ (un)pack work

¦ (un)pack result

• MWWorker
¦ unpack worker init data()

¦ execute task()

MWApplications

• MWMINLP (Goux, Leyffer, Nocedal) � A branch and bound
code for nonlinear integer programming

• MWLShaped (Linderoth, Shapiro, Wright) � A cutting plane
and veri�cation code for linear stochastic programming

• FATCOP (Chen, Ferris, Linderoth) � A branch and cut code for
linear integer programming

• MWQAP (Anstreicher, Brixius, Goux, Linderoth) � A branch and
bound code for solving the quadratic assignment problem

• MWQPBB (Linderoth) � The rudimentary, incomplete,
nonsensical code I currently working on

• . . . (Your application here) . . .

The Quadratic Assignment Problem

min
π∈Π

n∑

i=1

n∑

j=1

aijbπ(i)π(j) +
n∑

i=1

ciπ(i)

Loc 1

Loc 4

Loc 2Fac 2

Fac 1

Fac 3
Loc 3

Fac 4

• QAP is NP-�Super�-hard.
¦ TSP : n > 16, 000

¦ QAP : n = 25

• Branch and Bound is the
method of choice, but
very few tight, computable,
bounds exist.

Features of QAP B&B Algorithm

• Convex quadratic programming relaxation.
¦ Solved using Frank-Wolfe algorithm.

• Use �polytomic� branching, based on one facility or one
location.

• Exploit symmetry in branching

• Uses (extensively) strong branching:
¦ Tentatively branch on each facility/location to see which

branching choice will be best

• Implement using MW to run on the Computational Grid

MW Implementation

• Fitting the B & B algorithm into the master-worker paradigm is
not groundbreaking research

• We must avoid �contention� at the master

�� ������ ������ 	�	
 ���� � ����

�� �� ������ �� �� ���� �� � !" #$

Send me a Task

Here is a Task

All The Queueing Theory I Know

• We can reduce contention in two ways
1. Increase the service rate
2. Reduce the arrival rate

? A parallel depth-�rst oriented strategy achieves these goals.
¦ Available worker is given �deepest� node by master
¦ Worker examines the subtree rooted at this node in a

depth-�rst fashion for t seconds.

The Holy Grail!

• (NUG30) (n = 30) has been the �holy-grail� of computational
QAP research for > 30 years

• Using an old idea of Knuth, we estimated the CPU time
required to solve NUG30 to be 5-10 years on a fast workstation

⇒ We'd better get a pretty big Grid!

Our Computational Grid

Number Type Location
414 Intel/Linux Argonne
96 SGI/Irix Argonne

1024 SGI/Irix NCSA
16 Intel/Linux NCSA
45 SGI/Irix NCSA
246 Intel/Linux Wisconsin
146 Intel/Solaris Wisconsin
133 Sun/Solaris Wisconsin
190 Intel/Linux Georgia Tech
94 Intel/Solaris Georgia Tech
54 Intel/Linux Italy (INFN)
25 Intel/Linux New Mexico
5 Intel/Linux Columbia U.

10 Sun/Solaris Columbia U.
12 Sun/Solaris Northwestern

2510

NUG30 is solved!

14, 5, 28, 24, 1, 3, 16, 15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19, 8, 18, 7, 27, 12, 11, 23

�MY FATHER USED 3.46× 108 CPU SECONDS, AND ALL I GOT WAS
THIS LOUSY PERMUTATION�

Wall Clock Time: 6:22:04:31
Avg. # Machines: 653

CPU Time: ≈ 11 years
Nodes: 11,892,208,412
LAPs: 574,254,156,532

Parallel Ef�ciency: 92%

Workers

0

200

400

600

800

1000

6/9 6/10 6/11 6/12 6/13 6/14 6/15

W
or

ke
rs

Time

KLAPS

0

200

400

600

800

1000

1200

1400

1600

1800

6/9 6/10 6/11 6/12 6/13 6/14 6/15

K
LA

P
S

Time

Parallel DFS worked Great for QAP

0

200

400

600

800

1000

6/9 6/10 6/11 6/12 6/13 6/14 6/15

W
or

ke
rs

Time

• Kept up to 1000 workers
busy > 90% of the time in a
very dynamic grid environ-
ment

• We knew a priori a very
good solution

• Tree depth was bounded

Problems with DFS for Global Optimization

• Tree depth not bounded!
• B&B algorithms may not converge unless you search nodes

in a best �rst fashion (or at least you have to branch on the
node with the best lower bound �every once in a while�).

• We may not know a good solution
? Use NLP solvers to try and �nd feasible (locally optimal)

solution

How Bad Can Depth-First Search Be?

Ex: Nonconvex quadratic programming formulation of max clique
problem on ten nodes.
¦ Naive implementation
¦ Two-way rectangular branching

• Depth-First Search�> 3, 000, 000 nodes

• Best-First Search� ≈ 30, 000 nodes

How Bad Can Best-First Search Be?

Ex: Nonconvex quadratic programming formulation of max clique
problem on 200 nodes.
¦ Naive MW (Parallel) Implementation running on a

Computational Grid of around 100 nodes

• Master processes crashes, since the number of nodes in the list
exhausts the computer memory (1GB).

• Huge unexplored subtree messages passed from Workers to
Master

Conclusions

This page intentionally left blank

The Future of Global Optimization

Disclaimer: This really comes from the perspective of an integer
programmer � not someone intimately in touch with the �eld!

• I think that many of the great advances in deterministic global
optimization have come by including more IP technology into the
solvers

• But I think maybe more could be done!
¦ Cutting Planes
¦ Nonlinear inequalities?
¦ Can one use RLT (Sherali et. al) cuts in a

�separate-when-needed� manner
¦ Strong Branching
¦ Stronger Preprocessing

• Run it on the Grid!

(My) Future Work

• Implement SOCP relaxations.

• Add obvious (but very important) bells-and-whistles to current
code.
¦ Strong Preprocessing
¦ Strong Branching

• How to balance depth-�rst with best-�rst search on the Grid?

• Try to solve some big instances!
¦ I'm here looking for big, unsolved, interesting problems!

