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2 Global Continuous (or Discrete) Op-
timization Problem

f*= f(x*) = global mingepf(x) (or maxepf(x))
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The main focus of computational complexity Is to analyze
theintrinsic difficulty of optimization problems and to
decide which of these problems are likely to be tractable.
The pursuit for developing efficient algorithms also leads
to elegant general approache#or solving optimization
problems, and reveagirprising connectionsamong
problems and their solutions.
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The main focus of computational complexity Is to analyze
theintrinsic difficulty of optimization problems and to
decide which of these problems are likely to be tractable.
The pursuit for developing efficient algorithms also leads
to elegant general approache#or solving optimization
problems, and reveagirprising connectionsamong
problems and their solutions.

The general problem NP-hard. Furthermore,
checking existence of a feasible point that satisfies ti
optimality conditions Is also aNP-hard problem.

Fundamental problem:
How to check convexity!
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3 Why these problems are difficult?
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Many powerful techniques in global optimization are
based on the fact that many objective functions can
expressed as tlfference of two convex functions
(so calledad.c. functions).
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Many powerful techniques in global optimization are
based on the fact that many objective functions can
expressed as tlfference of two convex functions
(so calledad.c. functions).

If D(x) is an objective function irR", then the
representatio(z) = p(x) — q(x), wherep, g are
convex functions Is said to bedac. decompositionof
D.

The space of d.c. functions cdosedunder many
operations frequently encountered in optimization
(.e., sum, product, max, min, etc).

Hartman 1959: Every locally d.c. function is d.c.
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For simplicity of notation, consider the d.c. program:

min f(x) — g(z)
st. ze€ D (1)

whereD Is apolytopein R with nonempty interior,
and f andg areconvex functionsn R".

By introducing an additional variablte Problem (1)
can be converted into the equivalent problem:
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e Global Concave Minimization:

min t — g(x)

2
st. z€D,f(x)—t<0 @)

with concave objective functiont — g(«) andconvex
feasible set{(z,t) € R"™' :x € D, f(z) —t < 0}. If
(x*,t*) is an optimal solution of (2), thes* is an optimal
solution of (1) and* = f(x*).

Therefore, any d.c. program of type (1) can be
solved by an algorithm for minimizing a concave
function over a convex set.
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Monotonicity with respect to some variables (partial
monotonicity) or to all variables (total monotonicity) is a
natural property exhibited by many problems encountere
In applications. The most general problendaf

monotonic optimization Is:

min  f(z) — g(x)
st. filx)—gi(x) <0,i=1,....m

where are all functions are increasing 8f.

(3)
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Dptimization Problems

\ssume without loss of generality thatr) = 0.



5 DI Optimization Problems

= Assume without loss of generality thatr) = 0.
wA{Vi fi(x)—gi(z) <0} & max{fi(r)—gi(x)} <0<

1<e<m
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5 DI Optimization Problems

= Assume without loss of generality thatr) = 0.

8 Vi filz)=gi(z) < 0} & max {fi(z)—gi(z)} <0<

1<i<m

" & F(r) — G(x) <0, where

F(x )_max{fz ‘|‘Zg]

17

= Z!Jé(flf)
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5 DI Optimization Problems
= Assume without loss of generality thatr) = 0.

8 Vi filz)=gi(z) < 0} & max {fi(z)—gi(z)} <0<

1<i<m

" & F(r) — G(x) <0, where

F(x )_max{fz ‘|‘Zg]

17
= gilx)
F(z) andG(x) are both increasing functions.
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5 DI Optimization Problems

= Problem reduces to:

min f(x)
st. F(x)+t< F(b),
G(x) +t > F(b),

t < F(b) — F(0),

= A setG C R normal if for any two pointsz, =’ such
thaty' < z, iIf z € G, thenz’ € G.
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Numerous global optimization problems can be
reformulated as monotonic optimization problems. Such
problems include multiplicative programming, nonconvex
guadratic programming, polynomial programming, and
Lipschitz optimization problems.

References

[1] H. Tuy, Monotonic OptimizationSIAM Journal of Optimization Vol.
11, No. 2 (2000), pp. 464-494.

[2] P.M. PARDALOS, H.E. ROMEIJN, H. Tuy, Recent developments and
trends in Global OptimizationJournal of Comp.Appl. Math, 124
(2000), pp. 209-228.

Recent advances and trends in global optimization — p.14/58



6 IS Continuous Optimization different
than Discrete Optimization?

In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe throggometric,
analytic, and algebraictechniques. Such techniques
Include global optimization formulations, semidefinite
programming, and spectral theory.
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In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe throguggometric,
analytic, and algebraictechniques. Such techniques
Include global optimization formulations, semidefinite
programming, and spectral theory.

Examples:

Interior Point and Semidefinite Programming Algorithms
Lovasz number

Goemans-Williamson Relaxation of the maximum cut
problem

Solution of Gilbert-Pollak’s Conjecture (Du-Hwang)
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ontinuous Optimization different
Discrete Optimization?

nles:

z€{0,1} & z—2°=2(1-2)=0
I
ze{0,1} s z+w=1,2>0,w>0,zw=0




6 IS Continuous Optimization different
than Discrete Optimization?

Examples:

Bl ze{0,1}e2—2°=2(1—-2)=0
or
ze{0, 1} z+w=1,2>0,w>0,zw=0

® Integer constraints are equivalent to continuous nonconue
constraints (complementarity!)
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6 IS Continuous Optimization different
than Discrete Optimization?

Examples:

Bl ze{0,1}e2—2°=2(1—-2)=0
or
ze{0, 1} z+w=1,2>0,w>0,zw=0

® Integer constraints are equivalent to continuous nonconue
constraints (complementarity!)

m | Discrete Optimization <= Continuous Optimization

= The key issue Is:
Convex Optimization == Nonconvex Optimization

= The Linear complementarity problem (LCP) is equivalent to
the linear mixed integer feasibility problem (Pardalos-R®en)
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{ Continuous Approaches to Discrete
Optimization Problems

References

[1]

2]

[3]

P. M. PARDALOS AND J. B. ROSEN, Constrained Global
Optimization: Algorithms and ApplicationSpringer-Verlag,
Berlin, 1987.

PANOS M. PARDALOS AND HENRY WoOLKOWICZ, Topics In
Semidefinite and Interior-Point Methadsmerican
Mathematical Society (1998).

P.M. PARDALOS, Continuous Approaches to Discrete
Optimization Problemdn Nonlinear Optimization and
Applications G. Di Pillo & F. Giannessi, Ed., Plenum (1996), pp.
313-328.

Recent advances and trends in global optimization — p.17/58



{ Continuous Approaches to Discrete
Optimization Problems
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The satisfiability problem (SAT) Is central In mathemat
cal logic, computing theory, and many industrial applic:
tion problems. Problems in computer vision, VLSI desig!
databases, automated reasoning, computer-aided desigr
manufacturing, involve the solution of instances of the sat
fiability problem. Furthermore, SAT Is the basic problem i
computational complexity. Developing efficient exact algc
rithms and heuristics for satisfiability problems can lead
general approaches for solving combinatorial optimizatic
problems.
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(.1 Satisfiability Problems

LetCq,Co, ..., C, ben clauses, involvingn Boolean variables
x1,%9, ..., Tm, Which can take on only the values ue orf al se (1 or 0).

Define clause to be
m;
Ci = \/ lij,
j=1

where the literal$;; € {z;,z; |1 =1,...,m}.
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(.1 Satisfiability Problems

LetCq,Co, ..., C, ben clauses, involvingn Boolean variables
x1,%9, ..., Tm, Which can take on only the values ue orf al se (1 or 0).
Define clause to be

where the literal$;; € {z;,z; | i =1,...,m}.
In the Satisfiability Problem (CN F)

/\ C; = /\(\/ li5)
i=1 i=1 j=1

one is to determine the assignment of truth values tartlvariables that satisfy

all n clauses.
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(.1 Satisfiability Problems

Given aC' N F formula F(x) from {0, 1} to {0, 1} with n clauses
C1,...,C,, we define a real functioi(y) from E™ to E that transforms the
SAT problem into an unconstraingtbbal optimization problem:

il ) (4)
where
fly) =) cly). (5)
1=1

A clause functiory;(y) is a product ofn literal functionsg;;(y;)
(1<j<m):

Ci = H qij (Yj); ©)
j=1
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(.1 Satisfiability Problems

where
)

ly; — 1| ifliteral z; is in clauseC);

¢ij(y;) = § |y; +1| ifliteral z; is in clauseC; (7)

1 If neitherz; norz; Is in C;
\

The correspondence betweeandy is defined as follows (fot < ¢ < m):

y

r, =< 0 ifyi:—l

\ unde fined otherwise

F(X) is true iff f(y)=0 on the corresponding= {—1,1}™.
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(.1 Satisfiability Problems

Next consider a polynomial unconstraingidbal optimization formulation:

Juin f (¥), (8)
where
fly) =) aly) ©)
=1

A clause functiorr;(y) is a product ofn literal functionsg;;(y;)
(1<j<m):

ci = || @s(yy), (10)
j=1
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(.1 Satisfiability Problems

where

(
(y; — 1)* if z; is in clauseC;

aij(y;) =% (y; + 1% if Z; is in clauseC; (11)

1 If neitherx; norz; is in C;
\

wherep Is a positive integer.
The correspondence betweeandy is defined as follows (fot < ¢ < m):

2

1 ifyz':1
r, =< 0 ifyi:—l

unde fined otherwise
\

F(x) is true iff f(y)=0 on the corresponding= {—1,1}".
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(.1 Satisfiability Problems

= These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.
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These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.

A good property of the transformation is tlthese
models establish a correspondence between the
global minimum points of the objective function
and the solutions of the original SAT problem.

A CNF F'(x) Is trueif and only If f takes the global
minimum value) on the corresponding
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(.1 Satisfiability Problems
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Consider a graptyr = G(V, E), whereV = {1,...,n}
denotes the set of vertices (nodes), @denotes the set of
edges. Denote b, 7) an edge joining vertexand vertex
9. A clique of G Is a subset” of vertices with the property
that every pair of vertices i@’ is joined by an edge. In
other words(' is a clique if the subgrap&'(C') induced by
C'Is complete. The maximum clique problem is the
problem of finding a clique s&t of maximal cardinality.
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Consider a graptyr = G(V, E), whereV = {1,...,n}
denotes the set of vertices (nodes), @denotes the set of
edges. Denote b, 7) an edge joining vertexand vertex
9. A clique of G Is a subset” of vertices with the property
that every pair of vertices i@’ is joined by an edge. In
other words(' is a clique if the subgrap&'(C') induced by
C'Is complete. The maximum clique problem is the
problem of finding a clique s&t of maximal cardinality.

Applications:

e project selection, classification theory, fault tolerance,
coding theory, computer vision, economics, information
retrieval, signal transmission theory, aligning DNA and
protein sequences, and other specific problems.
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Multivariable polynomial formulations

W If zx Is the solution of the followingqontinuous) quadratic program

max f(z) =Y " & — D _(i.j)eE Ti%j = elx —1/221 Agx
subjecttad < x; < 1foralll <:<n

then, f (x*) equals the size of the maximum independent set.
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Multivariable polynomial formulations

W If zx Is the solution of the followingqontinuous) quadratic program

max f(z) =Y " & — D (ij)eE Tilj = elx —1/221 Agx
subjecttad < x; < 1foralll <:<n

then, f (x*) equals the size of the maximum independent set.

W If xx Is the solution of the followingqontinuous) polynomial program

max f(z) = > (1 — ;) H(z’,j)GE Lj
subjecttad < x; < 1foralll1 <:<n

then, f () equals the size of the maximum independent set.

¥ In both cases a polynomial time algorithm has been developed that
finds independent sets of large size.
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Multivariable polynomial formulations

References
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Motzkin-Strauss type approaches

Consider the continuousdefinite quadratic
programming problem

max fo(z)= Y. wuz; =izt Agx
(,7)€l

st. zeS={z=(x1,...,2.) > z; =1, (12)
i=1
33i>0 (z:l,,n)},

where A Is the adjacency matric of the graph
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Motzkin-Strauss type approaches

w If @ = max{fqs(z): x € S}, thenG has a maximum
cliqueC of sizew(G) = 1/(1 — 2a). This maximum
can be attained by setting = 1/k if € C' and
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If « = max{fq(z):2z € S}, thenG has a maximum
cliqueC of sizew(G) = 1/(1 — 2a). This maximum
can be attained by setting = 1/k if € C' and
(Pardalos and Phillips 1990) K, hasr negative
eigenvalues, then at least— r constraints are active
at any global maximum* of f(x). Therefore, ifAq
hasr negative eigenvalues, then the sjizé of the
maximum clique is bounded Ry'| < r + 1.
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The“call graph” comes from telecommunications traffic. The vertice
of this graph are telephone numbers, and the edges are calks fmom
one number to another (including additional billing dataglsas, the
time of the call and its duration). The challenge in studyea{j graphs

IS that they are massive. Every day AT & T handles approxim&@0
million long-distance calls.
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The“call graph” comes from telecommunications traffic. The vertice
of this graph are telephone numbers, and the edges are calks fmom
one number to another (including additional billing dataglsas, the
time of the call and its duration). The challenge in studyea{j graphs
IS that they are massive. Every day AT & T handles approxim&@0
million long-distance calls.

Careful analysis of the call graph could help with infrastructure
planning, customer classification and marketing

How can we visualize such massive graphs? To flash a terabgitda
on a 1000x1000 screen, you need to cram a megabyte of datzaalo

pixel!

Recent advances and trends in global optimization — p.32/58



Recent Work on Massive Telecommu-
nication Graphs

In our experiments with data frorelecommunication traffic, the
corresponding multigraph h&s,767,087 vertices and over 170
million of edges
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million of edges
A giant connected component with 44,989,29%&rtices was

computed. Thenaximum (quasi)-clique problemis considered in
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Ization on Massive Graphs

ral other graphs have been considered:
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Several other graphs have been considered.:

Financial graphs
Brain models
Drug design models
J. Abello, P. M. Pardalos and M.G.C. Resende

(Editors), “Handbook of Massive Data Sets ', Kluwer
Academic Publishers, Dordrecht, 2002.
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Technigues and principles of minimax theory play a key
role in many areas of research, including game theory,

optimization, scheduling, location, allocation, packing, ar
computational complexity.

In general, a minimax problem can be formulated as

i 1
min max f(z,y) (13)

wheref(x,y) is a function defined on the product &f
andY spaces.
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Du and Hwang: Let g(x) = max;c; f;(x) where thef;’s
are continuous and pseudo-concave functions in a conve
region X and/(x) is a finite index set defined on a
compact subsex’ of P. Denote

M(z) ={i € I(x) | fi(x) = g(x)}. Suppose that for any
x € X, there exists a neighborhood:ofuch that for any
pointy in the neighborhood)/ (y) C M (x). If the
minimum value ofg(x) over X is achieved at an interior
point of X', thenthis minimum value is achieved at a
DH-point, i.e., a point with maximal\/ (x) over X'
Moreover, ifz is an interior minimum point in’ and
M(x) C M(y) for somey € X', theny is a minimum
point.
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Solution of Gilbert-Pollak’s Conjecture

D.Z. Du AND F.K. HWANG, An approach for proving
lower bounds: solution of Gilbert-Pollak’s conjecture or
Steiner ratig Proceedings 31th FOC&990), 76-85.
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The finite index sef in above can be replaced by a
compact set. The result can be stated as follows:

Du and Pardalos: Let f(z,y) be a continuous function on
X x I whereX Is a polytope InR™ and/ Is a compact set
in R". Letg(x) = max,ey f(x,y). If f(z,y) is concave
with respect tar, then the minimum value af(z) over X

IS achieved at some DH-point.

The proof of this result is also the same as the proof the
previous theorem except that the existence of the
neighborhood’” needs to be derived from the compactnes
of I and the existence af needs to be derived by Zorn’s
lemma.
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(.3 Minimax Problems
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(.4 Multi-Quadratic 0-1

P : min f(z) = 2! Az, s.t.
Bx >0, x'Cx > o, x € {0,1}", a is a constant.

P: ming(s,z) =els — Melz, s.t.

Ar —y—s+ Me=0, Bxr>b, y<

IM(e —x), Cx — 2+ Me>0, etz — Melzx >
a, z <2M'x, x € {0,1}", vy;, s;, z; > 0, where
M= |Clle andM = |[A]..
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P : min f(z) = 2! Az, s.t.
Bx >0, x'Cx > o, x € {0,1}", a is a constant.
P: ming(s,z) =els — Melz, s.t.
Ar —y—s+ Me=0, Bxr>b, y<
IM(e —x), Cx — 2+ Me>0, etz — Melzx >
a, z <2M'x, x € {0,1}", vy;, s;, z; > 0, where
M' = ||C||oc and M = || Al| -

Theorem: P has an optimal solution’ iff there exist
Y, Y, 2¥ such thatz?, ", %, 2Y) is an optimal
solution of P.
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Multi-Quadratic 0—1 programming can be reduced to
linear mixed O—1 programming problems. The numb:
of new additional continuous variables needed for th
reduction is onlyO(n) and the number of initial 0—1

variables remains the same.
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Multi-Quadratic 0—1 programming can be reduced to
linear mixed O—1 programming problems. The numb:
of new additional continuous variables needed for the
reduction is onlyO(n) and the number of initial 0—1
variables remains the same.

This technique allows us to solve Quadratic and
Multi-Quadratic 0—1 Programming problems by
applying any commercial package used for solving
Linear Mixed Integer Programming problems, such a
CPLEX, and XPRESS-MP by Dash Optimization.
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Multi-Quadratic 0—1 programming can be reduced to
linear mixed O—1 programming problems. The numb:
of new additional continuous variables needed for the
reduction is onlyO(n) and the number of initial 0—1
variables remains the same.

This technique allows us to solve Quadratic and
Multi-Quadratic 0—1 Programming problems by
applying any commercial package used for solving
Linear Mixed Integer Programming problems, such a
CPLEX, and XPRESS-MP by Dash Optimization.

We used this technique in medical applications
(epilepsy seizure prediction algorithms).
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8 Hierarchical (Multilevel) Optimiza-
tion

The word hierarchy comes from the Greek word
“Lepapyira”, a system of graded (religious) authority.
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The word hierarchy comes from the Greek word
“Lepapyira”, a system of graded (religious) authority.

The mathematical study of hierarchical structures can be
found in diverse scientific disciplines including
environment, ecology, biology, chemical engineering,
classification theory, databases, network design,
transportation, game theory and economics. The study
hierarchy occurring in biological structures reveals
Interesting properties as well as limitations due to differel
properties of molecules. To understand the complexity of
hierarchical designs requiresystems methodologies that
are amenable to modeling, analyzing and optimizing
(Haimes Y.Y. 1977) these structures.
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Hierarchical optimization can be used to study properties
of these hierarchical designs. lirerarchical

optimization, the constraint domain is implicitly
determined by a series of optimization problems which
must be solved in a predetermined sequence
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Hierarchical optimization can be used to study properties
of these hierarchical designs. lirerarchical

optimization, the constraint domain is implicitly
determined by a series of optimization problems which
must be solved in a predetermined sequence

Hierarchical (or multi-level) optimization is a
generalization of mathematical programming. The
simplest two-level (or bilevel) programming problem
describes a hierarchical system which is composed of tw
levels of decision makers and Is stated as follows:
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8 Hierarchical (Multilevel) Optimiza-
tion

(BP) min — o(x(y),y) (14)
subjecttoy(x(y),y) < 0 (15)
where z(y) = arg ;Iél)l{l f(x,y) (16)

subjectto g(z,y) < 0, (17)

whereX C R"andY C R™ areclosedsets;: X xY —
RPandg : X xY — R?are multifunctionsy and f are
real-valued functions. The s&t = {(x,y) : z € X,y €
Y, ¥(x,y) <0,9(x,y) < 0} is theconstraint sebf BP.
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Multi-level programming problems have been studied
extensively in their general setting during the last decade
In general, hierarchical optimization problems are
nonconvex and therefore Is not easy to find globally
optimal solutions. Moreover, suboptimal solutions may
lead to both theoretical and real-world paradoxes (as for
Instance in the case of network design problems).
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Multi-level programming problems have been studied
extensively in their general setting during the last decade
In general, hierarchical optimization problems are
nonconvex and therefore Is not easy to find globally
optimal solutions. Moreover, suboptimal solutions may
lead to both theoretical and real-world paradoxes (as for
Instance in the case of network design problems).

Many algorithmic developments are based on the
properties of special cases®P (and the more general
problem) and reformulations to equivalent or
approximating models, presumably more tractable. Most
of the exact methods are basedayanch and bound or
cutting plane techniquesand can handle only moderately
Size problems.



8 Hierarchical (Multilevel) Optimiza-
tion
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The basic idea of this approach is to partition all the
variables appearing in the optimization problem into
several groups, each of which consists of some variables
and regard each group as a set of active variables for
solving the original optimization problem.

With this approach we can formulate optimization
problems as multi-level optimization problems.
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9 Multivariate Partition Approach

= Consider the following problem:
' 1
Jnin f(), (1)
whereD is a robust set and(x) is continuous.

mLet{A;,,i=1,...,p} be apartition of
S={zy,....,x,},p>1.
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(1) Is equivalent to the following multilevel
optimization problem:

min { min ...{ymin (A1, ..., )} ...}, (2)

Yo1€Ds; Yoo, €Do, op €D,

whereos = (04, ...,0,) IS any permutation of

{1,2,...,p}. The components of the vectgy,
coincide with the elements &; and D, Is defined as
a feasible domain af,..
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9 Multivariate Partition Approach
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10 Nonconvex Network Problems

Pharmaceutical Industry Supply Chain Management,
E-commerce
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10 Nonconvex Network Problems

Pharmaceutical Industry Supply Chain Management,
E-commerce

= Dynamic Slope Scaling Procedu@{SP) for Fixed
Charge Network Problems.
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Pharmaceutical Industry Supply Chain Management,
E-commerce

Dynamic Slope Scaling Procedu@{SP) for Fixed
Charge Network Problems.

Reduction of nonconvex discontinuous network flow
problems to fixed charge network flow problems.
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E-commerce

Dynamic Slope Scaling Procedu@{SP) for Fixed
Charge Network Problems.

Reduction of nonconvex discontinuous network flow
problems to fixed charge network flow problems.

New heuristics based dDSSP and dynamic domain
contraction technique for large-scale problems.
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Pharmaceutical Industry Supply Chain Management,
E-commerce

Dynamic Slope Scaling Procedu@{SP) for Fixed
Charge Network Problems.

Reduction of nonconvex discontinuous network flow
problems to fixed charge network flow problems.

New heuristics based dDSSP and dynamic domain
contraction technique for large-scale problems.

New local search techniques.
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Computational results in bipartite networks with up to
350350 arcs and 1351 nodes, and layered networks with
up to 297000 arcs and 2501 nodes are very promising
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We discussed a small fraction of research directions In
global optimization. Furthermore, the existence of
commercial multiprocessing computers has created
substantial interest in exploring the usegpafallel

processingfor solving global optimization problems.
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“Seekers after gold dig up much earth and find
little”

“The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- HERACLITUS
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