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2 Global Continuous (or Discrete) Op-
timization Problem
f ∗ = f(x∗) = global minx∈Df(x) (or maxx∈Df(x))
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3 Why these problems are difficult?

The main focus of computational complexity is to analyze
the intrinsic difficulty of optimization problems and to
decide which of these problems are likely to be tractable.
The pursuit for developing efficient algorithms also leads
to elegant general approachesfor solving optimization
problems, and revealssurprising connectionsamong
problems and their solutions.
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3 Why these problems are difficult?

The main focus of computational complexity is to analyze
the intrinsic difficulty of optimization problems and to
decide which of these problems are likely to be tractable.
The pursuit for developing efficient algorithms also leads
to elegant general approachesfor solving optimization
problems, and revealssurprising connectionsamong
problems and their solutions.

The general problem isNP-hard. Furthermore,
checking existence of a feasible point that satisfies the
optimality conditions is also anNP-hard problem.

Fundamental problem:
How to check convexity!
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3 Why these problems are difficult?
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4 DC Optimization Problems

Many powerful techniques in global optimization are
based on the fact that many objective functions can be
expressed as thedifference of two convex functions
(so calledd.c. functions).
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4 DC Optimization Problems

Many powerful techniques in global optimization are
based on the fact that many objective functions can be
expressed as thedifference of two convex functions
(so calledd.c. functions).

If D(x) is an objective function inRn, then the
representationD(x) = p(x) − q(x), wherep, q are
convex functions is said to be ad.c. decompositionof
D.

The space of d.c. functions isclosedunder many
operations frequently encountered in optimization
(i.e., sum, product, max, min, etc).

Hartman 1959: Every locally d.c. function is d.c.
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4 DC Optimization Problems

For simplicity of notation, consider the d.c. program:

min f(x) − g(x)

s.t. x ∈ D
(1)

whereD is apolytopein Rn with nonempty interior,
andf andg areconvex functionsonRn.

By introducing an additional variablet, Problem (1)
can be converted into the equivalent problem:
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4 DC Optimization Problems

• Global Concave Minimization:

min t− g(x)

s.t. x ∈ D, f(x) − t ≤ 0
(2)

with concave objective functiont− g(x) andconvex
feasible set{(x, t) ∈ Rn+1 : x ∈ D, f(x) − t ≤ 0}. If
(x∗, t∗) is an optimal solution of (2), thenx∗ is an optimal
solution of (1) andt∗ = f(x∗).

Therefore, any d.c. program of type (1) can be
solved by an algorithm for minimizing a concave
function over a convex set.
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5 DI Optimization Problems

Monotonicity with respect to some variables (partial
monotonicity) or to all variables (total monotonicity) is a
natural property exhibited by many problems encountered
in applications. The most general problem ofd.i.
monotonic optimization is:

min f(x) − g(x)

s.t. fi(x) − gi(x) ≤ 0, i = 1, . . . ,m
(3)

where are all functions are increasing onRn
+.
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Assume without loss of generality thatg(x) = 0.
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{∀i fi(x)−gi(x) ≤ 0} ⇔ max
1≤i≤m

{fi(x)−gi(x)} ≤ 0 ⇔

⇔ F (x) −G(x) ≤ 0, where

F (x) = max
i
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∑
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gj(x)},

G(x) =
∑

i

gi(x)
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Assume without loss of generality thatg(x) = 0.

{∀i fi(x)−gi(x) ≤ 0} ⇔ max
1≤i≤m

{fi(x)−gi(x)} ≤ 0 ⇔

⇔ F (x) −G(x) ≤ 0, where

F (x) = max
i

{fi(x) +
∑

i 6=j

gj(x)},

G(x) =
∑

i

gi(x)

F (x) andG(x) are both increasing functions.
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5 DI Optimization Problems

Problem reduces to:

min f(x)

s.t. F (x) + t ≤ F (b),

G(x) + t ≥ F (b),

0 ≤ t ≤ F (b) − F (0),

x ∈ [0, b] ⊂ Rn
+.

A setG ⊆ Rn
+ normal if for any two pointsx, x′ such

thatx′ ≤ x, if x ∈ G, thenx′ ∈ G.
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5 DI Optimization Problems

Numerous global optimization problems can be
reformulated as monotonic optimization problems. Such
problems include multiplicative programming, nonconvex
quadratic programming, polynomial programming, and
Lipschitz optimization problems.
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[2] P.M. PARDALOS, H.E. ROMEIJN, H. TUY, Recent developments and
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6 Is Continuous Optimization different
than Discrete Optimization?

In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe throughgeometric,
analytic, and algebraictechniques. Such techniques
include global optimization formulations, semidefinite
programming, and spectral theory.
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6 Is Continuous Optimization different
than Discrete Optimization?

In combinatorial optimization and graph theory many
approaches have been developed that link the discrete
universe to the continuous universe throughgeometric,
analytic, and algebraictechniques. Such techniques
include global optimization formulations, semidefinite
programming, and spectral theory.
Examples:

Interior Point and Semidefinite Programming Algorithms

Lovász number

Goemans-Williamson Relaxation of the maximum cut
problem

Solution of Gilbert-Pollak’s Conjecture (Du-Hwang)
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6 Is Continuous Optimization different
than Discrete Optimization?

Examples:

z ∈ {0, 1} ⇔ z − z
2 = z(1 − z) = 0

or

z ∈ {0, 1} ⇔ z + w = 1, z ≥ 0, w ≥ 0, zw = 0
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6 Is Continuous Optimization different
than Discrete Optimization?

Examples:

z ∈ {0, 1} ⇔ z − z
2 = z(1 − z) = 0

or

z ∈ {0, 1} ⇔ z + w = 1, z ≥ 0, w ≥ 0, zw = 0

Integer constraints are equivalent to continuous nonconvex
constraints (complementarity!)

Discrete Optimization⇐⇒ Continuous Optimization

The key issue is:
Convex Optimization 6= Nonconvex Optimization

The Linear complementarity problem (LCP) is equivalent to
the linear mixed integer feasibility problem (Pardalos-Rosen)
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7 Continuous Approaches to Discrete
Optimization Problems
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7 Continuous Approaches to Discrete
Optimization Problems
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7.1 Satisfiability Problems

The satisfiability problem (SAT) is central in mathemati-

cal logic, computing theory, and many industrial applica-

tion problems. Problems in computer vision, VLSI design,

databases, automated reasoning, computer-aided design and

manufacturing, involve the solution of instances of the satis-

fiability problem. Furthermore, SAT is the basic problem in

computational complexity. Developing efficient exact algo-

rithms and heuristics for satisfiability problems can lead to

general approaches for solving combinatorial optimization

problems.
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7.1 Satisfiability Problems

Let C1, C2, . . . , Cn ben clauses, involvingm Boolean variables

x1, x2, . . . , xm, which can take on only the valuestrue or false (1 or 0).

Define clausei to be

Ci =

mi
∨

j=1

lij ,

where the literalslij ∈ {xi, x̄i | i = 1, . . . , m}.
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Let C1, C2, . . . , Cn ben clauses, involvingm Boolean variables

x1, x2, . . . , xm, which can take on only the valuestrue or false (1 or 0).

Define clausei to be

Ci =

mi
∨

j=1

lij ,

where the literalslij ∈ {xi, x̄i | i = 1, . . . , m}.

In theSatisfiability Problem (CNF )

n
∧

i=1

Ci =
n
∧

i=1

(

mi
∨

j=1

lij)

one is to determine the assignment of truth values to them variables that satisfy

all n clauses.

Recent advances and trends in global optimization – p.20/58



7.1 Satisfiability Problems

Given aCNF formulaF (x) from {0, 1}m to {0, 1} with n clauses

C1, . . . , Cn, we define a real functionf(y) from Em to E that transforms the

SAT problem into an unconstrainedglobal optimization problem:

min
y∈Em

f(y) (4)

where

f(y) =
n

∑

i=1

ci(y). (5)

A clause functionci(y) is a product ofm literal functionsqij(yj)

(1 ≤ j ≤ m):

ci =

m
∏

j=1

qij(yj), (6)
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7.1 Satisfiability Problems

where

qij(yj) =



















|yj − 1| if literal xj is in clauseCi

|yj + 1| if literal x̄j is in clauseCi

1 if neitherxj nor x̄j is in Ci

(7)

The correspondence betweenx andy is defined as follows (for1 ≤ i ≤ m):

xi =



















1 if yi = 1

0 if yi = −1

undefined otherwise

F (x) is true iff f (y)=0 on the correspondingy∈ {−1, 1}m.
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7.1 Satisfiability Problems

Next consider a polynomial unconstrainedglobal optimization formulation:

min
y∈Em

f(y), (8)

where

f(y) =
n

∑

i=1

ci(y). (9)

A clause functionci(y) is a product ofm literal functionsqij(yj)

(1 ≤ j ≤ m):

ci =

m
∏

j=1

qij(yj), (10)
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7.1 Satisfiability Problems

where

qij(yj) =



















(yj − 1)2p if xj is in clauseCi

(yj + 1)2p if x̄j is in clauseCi

1 if neitherxj nor x̄j is in Ci

(11)

wherep is a positive integer.

The correspondence betweenx andy is defined as follows (for1 ≤ i ≤ m):

xi =



















1 if yi = 1

0 if yi = −1

undefined otherwise

F (x) is true iff f (y)=0 on the correspondingy∈ {−1, 1}m.
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7.1 Satisfiability Problems

These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.
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7.1 Satisfiability Problems

These models transform the SAT problem from a
discrete, constrained decision problem into an
unconstrained global optimization problem.
A good property of the transformation is thatthese
models establish a correspondence between the
global minimum points of the objective function
and the solutions of the original SAT problem.
A CNFF (x) is trueif and only iff takes the global
minimum value0 on the correspondingy.
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7.1 Satisfiability Problems

References
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7.2 The Maximum Clique Problem

Consider a graphG = G(V,E), whereV = {1, . . . , n}
denotes the set of vertices (nodes), andE denotes the set of
edges. Denote by(i, j) an edge joining vertexi and vertex
j. A clique ofG is a subsetC of vertices with the property
that every pair of vertices inC is joined by an edge. In
other words,C is a clique if the subgraphG(C) induced by
C is complete. The maximum clique problem is the
problem of finding a clique setC of maximal cardinality.
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7.2 The Maximum Clique Problem

Consider a graphG = G(V,E), whereV = {1, . . . , n}
denotes the set of vertices (nodes), andE denotes the set of
edges. Denote by(i, j) an edge joining vertexi and vertex
j. A clique ofG is a subsetC of vertices with the property
that every pair of vertices inC is joined by an edge. In
other words,C is a clique if the subgraphG(C) induced by
C is complete. The maximum clique problem is the
problem of finding a clique setC of maximal cardinality.

Applications:
• project selection, classification theory, fault tolerance,
coding theory, computer vision, economics, information
retrieval, signal transmission theory, aligning DNA and
protein sequences, and other specific problems.
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Multivariable polynomial formulations

If x∗ is the solution of the following (continuous) quadratic program

max f(x) =
∑n

i=1 xi −
∑

(i,j)∈E xixj = eT x − 1/2xT AGx

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.
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max f(x) =
∑n

i=1 xi −
∑

(i,j)∈E xixj = eT x − 1/2xT AGx

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.

If x∗ is the solution of the following (continuous) polynomial program

max f(x) =
∑n

i=1(1 − xi)
∏

(i,j)∈E xj

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.
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Multivariable polynomial formulations

If x∗ is the solution of the following (continuous) quadratic program

max f(x) =
∑n

i=1 xi −
∑

(i,j)∈E xixj = eT x − 1/2xT AGx

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.

If x∗ is the solution of the following (continuous) polynomial program

max f(x) =
∑n

i=1(1 − xi)
∏

(i,j)∈E xj

subject to0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

then,f(x∗) equals the size of the maximum independent set.

In both cases a polynomial time algorithm has been developed that

finds independent sets of large size.
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Multivariable polynomial formulations
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Motzkin-Strauss type approaches

Consider the continuousindefinite quadratic
programming problem

max fG(x) =
∑

(i,j)∈E

xixj = 1
2x

TAGx

s.t. x ∈ S = {x = (x1, . . . , xn)
T :

n
∑

i=1

xi = 1,

xi ≥ 0 (i = 1, . . . , n)},

(12)

whereAG is the adjacency matric of the graphG.
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Motzkin-Strauss type approaches

If α = max{fG(x) : x ∈ S}, thenG has a maximum
cliqueC of sizeω(G) = 1/(1 − 2α). This maximum
can be attained by settingxi = 1/k if i ∈ C and
xi = 0 if i /∈ C.
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Motzkin-Strauss type approaches

If α = max{fG(x) : x ∈ S}, thenG has a maximum
cliqueC of sizeω(G) = 1/(1 − 2α). This maximum
can be attained by settingxi = 1/k if i ∈ C and
xi = 0 if i /∈ C.

(Pardalos and Phillips 1990) IfAG hasr negative
eigenvalues, then at leastn− r constraints are active
at any global maximumx∗ of f(x). Therefore, ifAG

hasr negative eigenvalues, then the size|C| of the
maximum clique is bounded by|C| ≤ r + 1.
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The Call Graph

The“call graph” comes from telecommunications traffic. The vertices

of this graph are telephone numbers, and the edges are calls made from

one number to another (including additional billing data, such as, the

time of the call and its duration). The challenge in studyingcall graphs

is that they are massive. Every day AT & T handles approximately 300

million long-distance calls.
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The Call Graph

The“call graph” comes from telecommunications traffic. The vertices

of this graph are telephone numbers, and the edges are calls made from

one number to another (including additional billing data, such as, the

time of the call and its duration). The challenge in studyingcall graphs

is that they are massive. Every day AT & T handles approximately 300

million long-distance calls.

Careful analysis of the call graph could help with infrastructure
planning, customer classification and marketing.

How can we visualize such massive graphs? To flash a terabyte of data

on a 1000x1000 screen, you need to cram a megabyte of data intoeach

pixel!
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Recent Work on Massive Telecommu-
nication Graphs

In our experiments with data fromtelecommunication traffic, the

corresponding multigraph has53,767,087 vertices and over 170
million of edges.
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Recent Work on Massive Telecommu-
nication Graphs

In our experiments with data fromtelecommunication traffic, the

corresponding multigraph has53,767,087 vertices and over 170
million of edges.
A giant connected component with 44,989,297vertices was

computed. Themaximum (quasi)-clique problem is considered in

this giant component.
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Optimization on Massive Graphs

Several other graphs have been considered:
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Optimization on Massive Graphs

Several other graphs have been considered:

Financial graphs

Brain models

Drug design models

J. Abello, P. M. Pardalos and M.G.C. Resende
(Editors), “Handbook of Massive Data Sets ”, Kluwer
Academic Publishers, Dordrecht, 2002.
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7.3 Minimax Problems
Techniques and principles of minimax theory play a key
role in many areas of research, including game theory,
optimization, scheduling, location, allocation, packing, and
computational complexity.
In general, a minimax problem can be formulated as

min
x∈X

max
y∈Y

f(x, y) (13)

wheref(x, y) is a function defined on the product ofX
andY spaces.
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7.3 Minimax Problems
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7.3 Minimax Problems
Du and Hwang: Let g(x) = maxi∈I fi(x) where thefi’s
are continuous and pseudo-concave functions in a convex
regionX andI(x) is a finite index set defined on a
compact subsetX ′ of P . Denote
M(x) = {i ∈ I(x) | fi(x) = g(x)}. Suppose that for any
x ∈ X, there exists a neighborhood ofx such that for any
pointy in the neighborhood,M(y) ⊆M(x). If the
minimum value ofg(x) overX is achieved at an interior
point ofX ′, thenthis minimum value is achieved at a
DH-point, i.e., a point with maximalM(x) overX ′.
Moreover, ifx is an interior minimum point inX ′ and
M(x) ⊆M(y) for somey ∈ X ′, theny is a minimum
point.
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7.3 Minimax Problems
Solution of Gilbert-Pollak’s Conjecture

D.Z. DU AND F.K. HWANG, An approach for proving

lower bounds: solution of Gilbert-Pollak’s conjecture on

Steiner ratio, Proceedings 31th FOCS(1990), 76-85.
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7.3 Minimax Problems
The finite index setI in above can be replaced by a
compact set. The result can be stated as follows:

Du and Pardalos: Let f(x, y) be a continuous function on
X × I whereX is a polytope inRm andI is a compact set
in R

n. Let g(x) = maxy∈Y f(x, y). If f(x, y) is concave
with respect tox, then the minimum value ofg(x) overX
is achieved at some DH-point.

The proof of this result is also the same as the proof the
previous theorem except that the existence of the
neighborhoodV needs to be derived from the compactness
of I and the existence of̂x needs to be derived by Zorn’s
lemma.

Recent advances and trends in global optimization – p.39/58



7.3 Minimax Problems
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7.4 Multi-Quadratic 0–1

P : min f(x) = xTAx, s.t.
Bx ≥ b, xTCx ≥ α, x ∈ {0, 1}n, α is a constant.

P̄ : min g(s, x) = eTs−MeTx, s.t.
Ax− y − s+Me = 0, Bx ≥ b, y ≤
2M(e− x), Cx− z +M ′e ≥ 0, eTz −M ′eTx ≥
α, z ≤ 2M ′x, x ∈ {0, 1}n, yi, si, zi ≥ 0, where
M ′ = ‖C‖∞ andM = ‖A‖∞.
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7.4 Multi-Quadratic 0–1

P : min f(x) = xTAx, s.t.
Bx ≥ b, xTCx ≥ α, x ∈ {0, 1}n, α is a constant.

P̄ : min g(s, x) = eTs−MeTx, s.t.
Ax− y − s+Me = 0, Bx ≥ b, y ≤
2M(e− x), Cx− z +M ′e ≥ 0, eTz −M ′eTx ≥
α, z ≤ 2M ′x, x ∈ {0, 1}n, yi, si, zi ≥ 0, where
M ′ = ‖C‖∞ andM = ‖A‖∞.

Theorem: P has an optimal solutionx0 iff there exist
y0, s0, z0 such that(x0, y0, s0, z0) is an optimal
solution ofP̄ .
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7.4 Multi-Quadratic 0–1

Multi-Quadratic 0–1 programming can be reduced to
linear mixed 0–1 programming problems. The number
of new additional continuous variables needed for the
reduction is onlyO(n) and the number of initial 0–1
variables remains the same.
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reduction is onlyO(n) and the number of initial 0–1
variables remains the same.

This technique allows us to solve Quadratic and
Multi-Quadratic 0–1 Programming problems by
applying any commercial package used for solving
Linear Mixed Integer Programming problems, such as
CPLEX, and XPRESS-MP by Dash Optimization.
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7.4 Multi-Quadratic 0–1

Multi-Quadratic 0–1 programming can be reduced to
linear mixed 0–1 programming problems. The number
of new additional continuous variables needed for the
reduction is onlyO(n) and the number of initial 0–1
variables remains the same.

This technique allows us to solve Quadratic and
Multi-Quadratic 0–1 Programming problems by
applying any commercial package used for solving
Linear Mixed Integer Programming problems, such as
CPLEX, and XPRESS-MP by Dash Optimization.

We used this technique in medical applications
(epilepsy seizure prediction algorithms).
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7.4 Multi-Quadratic 0–1
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8 Hierarchical (Multilevel) Optimiza-
tion

The word hierarchy comes from the Greek word
“ ιεραρχια”, a system of graded (religious) authority.
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8 Hierarchical (Multilevel) Optimiza-
tion

The word hierarchy comes from the Greek word
“ ιεραρχια”, a system of graded (religious) authority.

The mathematical study of hierarchical structures can be
found in diverse scientific disciplines including
environment, ecology, biology, chemical engineering,
classification theory, databases, network design,
transportation, game theory and economics. The study of
hierarchy occurring in biological structures reveals
interesting properties as well as limitations due to different
properties of molecules. To understand the complexity of
hierarchical designs requires “systems methodologies that
are amenable to modeling, analyzing and optimizing”
(Haimes Y.Y. 1977) these structures.
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8 Hierarchical (Multilevel) Optimiza-
tion

Hierarchical optimization can be used to study properties
of these hierarchical designs. Inhierarchical
optimization, the constraint domain is implicitly
determined by a series of optimization problems which
must be solved in a predetermined sequence.
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8 Hierarchical (Multilevel) Optimiza-
tion

Hierarchical optimization can be used to study properties
of these hierarchical designs. Inhierarchical
optimization, the constraint domain is implicitly
determined by a series of optimization problems which
must be solved in a predetermined sequence.

Hierarchical (or multi-level) optimization is a
generalization of mathematical programming. The
simplest two-level (or bilevel) programming problem
describes a hierarchical system which is composed of two
levels of decision makers and is stated as follows:
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8 Hierarchical (Multilevel) Optimiza-
tion

(BP) min
y∈Y

ϕ(x(y), y) (14)

subject toψ(x(y), y) ≤ 0 (15)
where x(y) = arg min

x∈X
f(x, y) (16)

subject to g(x, y) ≤ 0, (17)

whereX ⊂ Rn andY ⊂ Rm are closed sets,ψ : X × Y →

Rp andg : X × Y → Rq are multifunctions,ϕ andf are

real-valued functions. The setS = {(x, y) : x ∈ X, y ∈

Y, ψ(x, y) ≤ 0, g(x, y) ≤ 0} is theconstraint setof BP.
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8 Hierarchical (Multilevel) Optimiza-
tion

Multi-level programming problems have been studied
extensively in their general setting during the last decade.
In general, hierarchical optimization problems are
nonconvex and therefore is not easy to find globally
optimal solutions. Moreover, suboptimal solutions may
lead to both theoretical and real-world paradoxes (as for
instance in the case of network design problems).
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8 Hierarchical (Multilevel) Optimiza-
tion

Multi-level programming problems have been studied
extensively in their general setting during the last decade.
In general, hierarchical optimization problems are
nonconvex and therefore is not easy to find globally
optimal solutions. Moreover, suboptimal solutions may
lead to both theoretical and real-world paradoxes (as for
instance in the case of network design problems).

Many algorithmic developments are based on the
properties of special cases ofBP (and the more general
problem) and reformulations to equivalent or
approximating models, presumably more tractable. Most
of the exact methods are based onbranch and bound or
cutting plane techniquesand can handle only moderately
size problems. Recent advances and trends in global optimization – p.47/58



8 Hierarchical (Multilevel) Optimiza-
tion
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9 Multivariate Partition Approach

The basic idea of this approach is to partition all the
variables appearing in the optimization problem into
several groups, each of which consists of some variables,
and regard each group as a set of active variables for
solving the original optimization problem.

With this approach we can formulate optimization
problems as multi-level optimization problems.
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9 Multivariate Partition Approach

Consider the following problem:

min
x∈D⊆Rn

f(x), (1)

whereD is a robust set andf(x) is continuous.

Let {∆i, i = 1, . . . , p} be a partition of
S = {x1, . . . , xn}, p > 1.
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9 Multivariate Partition Approach

(1) is equivalent to the following multilevel
optimization problem:

min
yσ1

∈Dσ1

{ min
yσ2

∈Dσ2

. . . { min
yσp∈Dσp

f(∆1, . . . ,∆p)} . . .}, (2)

whereσ = (σ1, . . . , σn) is any permutation of
{1, 2, . . . , p}. The components of the vectoryσi

coincide with the elements of∆i andDσi
is defined as

a feasible domain ofyσi
.
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9 Multivariate Partition Approach

References
[1] H. X. Huang, P.M. Pardalos, and Z.J. Shen, A point balance

algorithm for the spherical code problem, Journal of Global

Optimization Vol. 19, No. 4 (2001), pp. 329-344.

[2] H. X. Huang, P.M. Pardalos, and Z.J. Shen, Equivalent

formulations and necessary optimality conditions for the

Lenard-Jones problem, Journal of Global Optimization Vol.22,

(2002), pp. 97-118.

[3] H. X. Huang and P.M. Pardalos,Multivariate Partition
Approach for Optimization Problems, Cybernetics and

Systems Analysis Vol. 38, No. 2 (2002), pp. 265-275.
Recent advances and trends in global optimization – p.52/58



9 Multivariate Partition Approach
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10 Nonconvex Network Problems
Pharmaceutical Industry Supply Chain Management,
E-commerce
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Pharmaceutical Industry Supply Chain Management,
E-commerce

Dynamic Slope Scaling Procedure (DSSP) for Fixed
Charge Network Problems.

Reduction of nonconvex discontinuous network flow
problems to fixed charge network flow problems.

New heuristics based onDSSP and dynamic domain
contraction technique for large-scale problems.

New local search techniques.
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10 Nonconvex Network Problems
Computational results in bipartite networks with up to
350350 arcs and 1351 nodes, and layered networks with
up to 297000 arcs and 2501 nodes are very promising.
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11 Parallel Algorithms

We discussed a small fraction of research directions in
global optimization. Furthermore, the existence of
commercial multiprocessing computers has created
substantial interest in exploring the uses ofparallel
processingfor solving global optimization problems.
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11 Parallel Algorithms
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HERACLITUS

“Seekers after gold dig up much earth and find
little”

“The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- HERACLITUS
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