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Global Solver Overview

LINDO API library is an LP, NLP, IP solver used by 
LINGO and What’sBest spreadsheet add-in.

LINDO API contains a global solver that finds a 
guaranteed (disclaimer: assuming infinite precision) global 
optimum to an arbitrary optimization problem;

Fully supports all common math functions:

x*y, x/y, x^y, log(x), exp(x), sqrt(x),

sin(x), cos(x), tan(x),

floor(x), 

abs(x), max(x,y ), min(x,y), 

if(x,y,z),  AND,  OR,  [where x is a logical expression]

psn(z), psl(z)    [Normal distribution]



Global Solver in LINDO API:  Outline

1) Getting a good solution quickly,  multistart and other ideas;
2) Guaranteed solutions:  a) convex relaxation,   b) split/branch;
3) Constraint propagation, bound tightening, interval arithmetic;
4) Constructing convex relaxations for wide range of functions:

continuous and smooth: x+y, x-y, x*y, sin(x), cos(x), etc.
continuous, nonsmooth: abs(x), max(x,y), min(x,y),
smooth not quite continuous, x/y, x^y, tan(x), floor(x),
logical functions: if( ), and, or, not >=, <=, = =, !=,
application specific functions: Normal cdf & linear loss function;

5) Using linearization + linear MIP only for functions such as:
abs(), min( ), if(),  special cases of x*y;

6) Choosing an algebraic representation, reformulation,      
e.g., x*(y-x) vs. x*y –x^2;

7) Choosing a machine representation with some vector functions,
8) Choosing a good branching; 
9) Numerical stability issues in cut management,  branch selection;
10) Computational testing. .



Roots

McCormick(1976): Convex relaxations and branching.

Sahinidis(1996): first general implementation of 
Relax, and Branch-if-necessary.

Brearly & Mitra(1975): IP preprocessing literature: 
Linear case of interval analysis and constraint propagation.

Kearfott(1998): Interval analysis in nonlinear case.

Ugray, Lasdon, et. al.(2002) Multi-start to find good solution.

Gau:  Implementation in LINDO API

Atlihan:  Multi-start in LINDO API



Getting a Good Initial Solution, Multi-start
Why?    a) User wants a good solution quickly,                         

b)  Do not waste time adding cuts far from optimum,   
c)  B&B has minimum number of nodes.

Basic Reference for multi-start: Ugray, Lasdon et. al.

For i = 1 to  ntrials:

Randomly select a point,  si,  in n-space so that it is not in        
the neighborhood of any of preceding points.

Call conventional hill-climbing solver with point si as initial 
solution, giving a final solution fi.

If solution fi is best yet,  store it.

Set the neighborhood of point fi big enough to include si .



General Global Optimization Methodology

Uses the branch and bound approach popularized by 
McCormick,  Sahinidis.

Two ideas:

1)    For each( arbitrary) nonlinear function,  given current 
bounds on variables, automatically generate a convex relaxation 
of the function.  Solve the relaxed convexified model.

2)  If solution to the relaxed problem is not feasible to the 
original model,  then branch,  i.e., partition the feasible region 
into two subregions.  Calculate new implied bounds on the 
variables for each subproblem.  Go back to (1).



Bound tightening, preprocessing, interval arithmetic, etc.

Why?  Relaxations are tighter if bounds on variables are tighter.

Example for operators + and -:

Round 0:  Given:                                            
2x-y ≥ 3;  -x + 2y ≥ 3;   x, y ≥ 0;

Round 1:   Implies:                                         
x ≥ (3+0)/2 = 1.5;    y ≥ (3+0)/2 = 1.5; 

Round 2:                                                    
x ≥ (3+1.5)/2 = 2.25;    y ≥ (3+1.5)/2 = 2.25;

etc.

Need rules for stopping,                                        
generalize for every operator supported.



Creating a Convex Relaxation/Bound
Example: Min = sin(x) + .5*abs(x-9.5); 

s.t.       0 ≤ x ≤ 12;

A Nonconvex Function: sin(x)+.5*abs(x-9.5) 
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Bounding a Nonconvex Function

Global Bound on sin(x), 0 < x < 12
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We replace sin( ) by its convex bound.  Solve, get x = 9.5.



Branching

We branch on x ≤ 9.5 vs. x ≥ 9.5 and re-bound.

The branch x ≥ 9.5 is convex with solution x = 10.47197.

Bound on sin(x) with branch at x = 9.5
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Bound discards x ≤ 9.5 branch, and we are done.



Linearization,  Methodology

Some functions can be recognized and linearized exactly.

Let δ be a 0/1 variable.  M = a big number.

Given:

a)  r = max(x,y);

Linearization:

r ≥ x;   r ≥ y;   r ≤ x + δ M;  r ≤ y + (1- δ)M ;

b) r = abs( x) = max(x,-x);

c) r = min(x,y) = - max(-x,-y);



Linearization continued.

d) r = IF(δ , x, y);

x - (1- δ) M ≤ r ≤ x + (1- δ) M; 

y       - δ M ≤ r ≤ y + δ M;

e) r = δ y;

y - (1- δ) M ≤ r ≤ y + (1- δ) M;

r ≤ δ M;

f)  xy = 0;   (Complementarity) 
-(1- δ) M ≤ x ≤ (1- δ) M; 

- δ M ≤ y ≤ δ M;



Global Optimization with IF( , , ) Function

A small text book example:

A                           B              C             D

1 EOQ Inventory with Quantity Discount
2 All Units Case, C and M, Chapter 7
3   Parameters
4    120000 = D = demand/year
5           100 = K = setup cost
6           0.2 = i = interest charge
7               Discount schedule
8  Breakpoint Cost/unit at or above this level
9                0           3

10        5000           2.96
11      10000           2.92
12      10000 = Q = amount to order
13 Total cost/year= $354,520.00 =(K*D/Q)+(i*Q/2+D)*IF(Q<A10,B9,IF(Q<A11,B10,B11))



IF( , ,) Function and its Usefulness

IF( ,  , ) is convenient for representing quantity discount

price schedules,  using nested IF’s.

A  customer example:

7  discount levels,

13 suppliers,

361 SKU’s

Resulted in model with

4646 rows  and 7790 variables.



The model as it came from the user….

cost=IF(D3<'Rebate Structure'!$A$3,0,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$4,'Rebate 
Structure'!D3*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$5,'Rebate 
Structure'!D4*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$6,'Rebate 
Structure'!D5*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$7,'Rebate 
Structure'!D6*'Rebate Calculation'!D3,IF(D3<'Rebate 
Structure'!$A$8,'Rebate Structure'!D7*'Rebate 
Calculation'!D3,IF('Rebate Calculation'!D3<'Rebate 
Structure'!$A$9,'Rebate Structure'!D8*'Rebate 
Calculation'!D3,IF('Rebate Calculation'!D3<'Rebate 
Structure'!$A$10,'Rebate Structure'!D9*'Rebate 
Calculation'!D3)))))))



Choosing an Algebraic Representation/Reformulation

1) x*x is converted to x^2  to get tighter convex relaxation;

2) More generally:     f1(x*y) ≥ 0;   f2(y*x) ≥ 0;

is converted to:    f1(w) ≥ 0;    f2(w) ≥ 0;     w = x*y;

3) x*(y-x) vs.  x*y – x^2;

One may be better for tight intervals,  the other for a tight 
relaxation.



Careful Rounding and Preprocessing

“Careful”, though not rigorous rounding is used in LINGO/LINDO API.

Example:  Arnold Neumaier’s problem,  may be difficult to solve accurately for some 
solvers.   LINGO solves to optimality in 0 secs.

n = 20;

min = - x(n);

(s+1)*x(1) - x(2) >= s-1;
-s*x(n-2) -(3*s-1)*x(n-1) + 3 *x(n) >= -(5*s-7);

@for( point(i)| i #gt# 1 #and# i #lt# n:
-s*x(i-1) +(s+1)*x(i) - x(i+1) >=((-1)^i)*(s+1)
);

@for( point(i)| i #le# 13:
@bnd( 0, x(i), 10)
);

@for( point(i)| i #gt# 13:
@bnd( 0, x(i), 1000000)
);

@for( point(i):
@gin(x(i))
);

! S l ti 1 2 1 2



Careful Rounding and Preprocessing, cont.

Some solvers have  difficulty finding a correct solution to this
problem with 6 variables and 1 constraint;

! (bigsum01)  Obj = -540564, LINGO time = .2 secs.;
MIN = - 81 * X_1 - 221 * X_2 - 219 * X_3

- 317 * X_4 - 385 * X_5 - 413 * X_6;

12228 * X_1 + 36679 * X_2 + 36682 * X_3
+ 48908 * X_4 + 61139 * X_5 + 73365 * X_6 = 89716837;

@GIN( X_1); @GIN( X_2); @GIN( X_3);
@GIN( X_4); @GIN( X_5); @GIN( X_6);
@BND( 0, X_1, 99999); @BND( 0, X_2, 99999);
@BND( 0, X_3, 99999); @BND( 0, X_4, 99999);
@BND( 0, X_5, 99999); @BND( 0, X_6, 99999);



How to Input Nonlinear Programs?

A) Through a file:

1) LINGO Script:

Execute runlingo scriptfile.lng

2) Low level RPN notation:

Execute runlindo modelfile.mpi.

B) Through memory:

1) LINGO Script:

nError= LSexecuteScriptLng( pLINGO, cScript);

2) Low level RPN notation:

nError= LSloadInstruct( pModel,…,codelist,…);



What Does an RPN Codelist(.mpi) Look Like?

! minimize =  x*sin(x*pi) + 10
! subject to
!                   x  - 10 <= 0;
BEGINMODEL XSINXPI
VARIABLES

X0001  8.0  0.0  10.0  C
OBJECTIVES
XSINXPI LS_MIN

EP_PUSH_VAR X0001
EP_PUSH_NUM 3.1415926
EP_MULTIPLY
EP_SIN
EP_PUSH_VAR X0001
EP_MULTIPLY
EP_PUSH_NUM 10.0
EP_PLUS

CONSTRAINTS
ROW1 L

EP_PUSH_VAR X0001
EP_PUSH_NUM 10.0
EP_MINUS

ENDMODEL



Performance on Continuous NLPs

A suite of 60 continuous NLPs arising in 
different applications 

Nonlinear Least Squares Regression
Inventory Management and Network Flows
Chemical Processes
Engineering Design (constrained 
polynomials etc…)

NLP Model Sizes
• (Min - Max) Constraints: (0 - 576)
• (Min - Max) Variables: (1 - 518)



Performances on Continuous NLPs (Cont.)

Server Specs (P4, 1.4 GHz, 2G RAM, NT4)
Seconds required to solve the entire suite

Global solver:  1789 secs
Multi-Start solver: 333 secs
Single-Start solver: 11 secs

Proving global optimality takes more time.
Multi-starts help finding improved solutions
Single-start is the fastest but solution quality is 
compromised.



Performance on Continuous NLPs (Cont.)

The Global Solver
found provably optimal solutions for         58 problems
proved infeasibility for                                 2 problems

The Multi-Start Solver (with 5 multi-starts)
obtained the       global optima in 39 out of 58 problems.
failed to find a feasible solution in 4 out of 58 problems.
found better solution than single-start in     11 out of 19 
problems.

Single-Start Solver
obtained the     global solution in 30 out of 58 problems.
failed to find a feasible solution in 5 out of 58.



Performances on Mixed-Integer NLPs

A suite of 50 NLPs with integer variables.
Model Sizes

• (Min-Max) Constraints: (1 - 113)
• (Min-Max) Variables: (1 - 131)

Global Solver 
found provably global optima for 50 out of 50 
problems. (Total time: 2475 secs.)

Multi-Start Solver 
performed 2 multi-starts at every node in B&B 
tree.
obtained global optima in 42 out of 50 problems ( 
Total time: 404 secs). 
no feasible solutions for 3 out of 50 problems.



Some Recent Example Problems:

Problem   Constraints Vars NLvars Intvars

test15-global     959           2492      764       192

Application: power plant operation. Originally took 15 hours,  
now takes 2 hours to global optimum.  Types of nonlinearities: x*y, 
x^k,  abs(x), IF( )
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