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Many engineering optimization problems fall into
one of three categories: optimal design, parameter

estimation, and optimal control. Their common fea-
ture is that differential equations appear in the prob-
lem formulation as conditions that must be satis-
fied for a physical system to be realizable or con-
structible. This issue of V&N is devoted to some
aspects of problem solving in engineering optimiza-
tion. A brief discussion of the multidisciplinary op-
timization (or optimal design) problem will serve to
introduce some terminology to the readers unfamil-
iar with this area and to place the subjects of the
invited articles in the context of several active re-
search directions.

Multidisciplinary optimization (MDO) may be
viewed as a collection of systematic approaches to
the design optimization of complex, coupled engi-
neering systems (e.g., [1]), where “multidisciplinary”
refers to different aspects of a design problem. For
instance, the design of aerospace vehicles involves
aerodynamics, structural analysis, propulsion, and
control, among many other disciplines.

Because the total design problem is an amor-
phous creature, not easily quantified or even de-
fined (for reasons both sociological and technical),
researchers who develop methods for optimal design,
find it convenient to abstract the MDQO problem as
a subset of the total design problem that can be for-
mulated as the following (here simplified) nonlinear
program:

miniwmize flz,u(x))
subject to  h(z,u(z)) =0 (1)
g(z,u(z)) = 0,

where z is the vector of design variables and u(z) is
defined via a block system of equations,

Ai(z,uq(x),. ..
Az, u(z)) = :
AN(‘T,ul(m)a Tt



for N blocks. The blocks represent the state equa-
tions of the disciplinary analyses (known as simu-
lations if they are accurate and expensive) and the
interdisciplinary couplings. The state equations nor-
mally form a set of coupled differential equations
that describe the behavior of the disciplinary sub-
systems. Given the design variables z, a disciplinary
analysis A;((z,u1(z),...,un(z)) = 0 solves for the
state variables or disciplinary responses u;(zx). Solv-
ing (2) leads to a full multidisciplinary analysis, or
MDA, in which the coupled disciplines give a phys-
ically consistent—and thus meaningful—result. For
instance, in aerospace MDO, a two-discipline prob-
lem might represent the aeroelastic interaction be-
tween aerodynamics (A;) and structural analysis
(A2) for a wing in steady-state flow. Then u; and
up may represent the flow field near the wing and
the deformed shape of the wing due to structural
response and aerodynamic loads, respectively. Com-
puting the flow field u; requires the shape of the wing
contained in u9, while computing the wing deforma-
tion u9 requires the aerodynamic loads, contained in
Uu.

Traditionally, at each iteration of optimization,
the design variable vector z is passed to the MDA
system. The coupled PDEs are then solved for the
state vector u, thus reducing the dimension of (1) by
making it a problem in z only. Optimizers will recog-
nize this method as a wvariable reduction or reduced-
space approach.

Among numerous difficulties associated with
solving (1), the most pronounced one has to do with
the frequently prohibitive expense of repeated eval-
uation of functions and derivatives via simulations.
Several current interrelated research directions aim
to overcome this difficulty.

The expense of implementing and executing a
straightforward, conventional optimization approach
to (1) has—for a long time—motivated researchers
to propose alternative optimal design problem for-
mulations and attendant optimization algorithms.
Historical notes and recent efforts in analysis and
development of problem formulations for MDO can
be found in [2, 3, 4] and references therein.

Simultaneous Analysis and Design (SAD or
SAND) (e.g., [5, 6]) is an example of an alterna-
tive problem formulation. It is motivated by the
experience which suggests that allowing infeasibility
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with respect to the MDA manifold far from solu-
tions may reduce the cost of optimization. SAND
treats both the design variables and the state vari-
ables as explicit optimization variables, while (2) is
treated as explicit equality constraints. The arti-
cle by Omar Ghattas and George Biros in this issue
discusses promising recent advances in using opti-
mization methods for solving reduced-space and full-
space (SAND) formulations.

Affordable computation of derivatives for any en-
gineering design problem is an important compo-
nent of an optimization procedure. The “adjoint
approach” is frequently used for computing deriva-
tives in problems governed by PDE. Michael Lewis
explains the adjoint approach in this issue for read-
ers unfamiliar with the technique. Interesting recent
results in computing derivatives for optimal design
problems can also be found in, e.g., [7, 8] and refer-
ences therein.

Another general research direction addresses the
expense of using simulations in computational op-
timization by developing adaptive modeling tech-
niques and optimization strategies for a systematic
use of variable-fidelity models.

Models and approximations of varying degree of
fidelity have been used in engineering for a long time
(e.g., see [9] for a review in the area of structural
optimization), with optimization procedures largely
based on heuristics. Due to improvements in the nu-
merical modeling techniques and the increased avail-
ability of high-fidelity analyses, optimization with
variable-fidelity models and approximations has be-
come a subject of much interest in the past few years
(e.g., [10, 11, 12]).

A variety of interesting modeling techniques—
such as reduced-order models [13, 14] and space map-
ping methods [15]—have been under study in a num-
ber of engineering areas. In this issue, Tony Patera
and co-authors describe some of the exciting recent
developments in reduced-order modeling at MIT.

Variable-fidelity models must be managed in op-
timization procedures in ways that minimize the ex-
pense, yet guarantee convergence to high-fidelity an-
swers. Recent model management methods include
techniques that use sensitivities (e.g., [16, 17]) and
techniques that do not (e.g., [18]). The latest results
in model management with variable-resolution mod-
els [19] and variable physical fidelity models [20] are



Volume 11 Number 2 August 2000

promising.

Optimization of engineering systems involves
many other areas of research, such as computer sci-
ence (for computational frameworks and problem in-
tegration), and other areas of optimization, such as
optimization under uncertainty. Interested readers
may find papers from a variety of contributing fields
in [21]. Last-minute news in some of the areas de-
scribed in this issue may be heard at the minisym-
posia titled “Optimization of Engineering Systems
Governed by Differential Equations”, Parts I and
I1, at the First STAM Conference on Computational
Science and Engineering, Sept. 21-24, Washington
DC. Finally, all optimizers are invited to contribute
to the new journal “Optimization and Engineering”
published by Kluwer!.
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Motivation

To motivate and illustrate our methods we consider
a specific example: a thermal fin. The fin, shown
in Figure 1, consists of a central “post” and four
“subfins ” the fin conducts heat from a prescribed
uniform flux “source” at the root, root, through
the large-surface-area subfins to surrounding flow-

ing air. The fin is characterized by seven design
parameters, or “inputs,” R, where
i= i =1,...,4, =Bi, = ,and = .
Here °¢ is the thermal conductivity of the  sub-

fin (normalized relative to the post conductivity) Bi
is the Biot number, a nondimensional heat transfer
coefficient reflecting convective transport to the air
at the fin surfaces and and are the length and
thickness of the subfins (normalized relative to the
post width). The performance metric, or “output,”

R, is chosen to be the average temperature of
the fin root normalized by the prescribed heat flux
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into the fin root. In order to optimize the fin de-
sign, we must be able to evaluate ( ) repeatedly
and rapidly.

1 ure

We can express our input-output relationship as
= (u( )), where () is a (continuous) lin-
ear functional — () = — and u( ) is
the temperature distribution within the fin. (The
temperature field is of course a function of the spa-
tial coordinate,  we explicitly indicate this depen-
dence only as needed.) The temperature distribu-
tion u( ) satisfies the elliptic partial differential
equation describing heat conduction in the fin,

(w, )= (), (1)

(u, ) is the weak form of the Laplacian, and

() reflects the prescribed heat flux at the root.

Here is the appropriate Hilbert space with associ-
ated inner product (, ) and induced norm 2,
The bilinear form (, ) issymmetric, ( , )=
(, ), 2 uniformly continu-

2
ous, ( , ) y )
and coercive, 2 (, ) ,
Here and are strictly positive real constants. Fi-

nally, the form ( ) is a linear bounded functional
for our choice of scaling and output, ()= (),
which we will exploit to simplify the exposition.

It can further be shown for our problem that
can be expressed as

() 2, ;
(2)

!The material presented in this article is an expository version of work performed in collaboration with Professor Yvon Ma-
day of University of Paris VI and reported in greater detail in references [1, 2, 3, 4]. We also thank Professor Jaime Peraire
of MIT, Professor Einar R nquist of Norwegian University of Science and Technology, Mr. Roland Von Kaenel of EPFL,
and Ms. Shidrati Ali of National University of Singapore-Singapore-MIT Alliance (SMA) for helpful comments. The work is
supported by AFOSR, NASA Langley Research Center, and SMA.

Here
derivatives over the fin reference domain

1( ), the space of functions that are square integrable and that have square integrable first (distributional)
. The inner product ()

may be chosen to be
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for appropriately chosen functions R and
associated -independent bilinear forms
R, =1,..., . Note that we pose our problem on
a ed fin reference domain in order to ensure that
the parametric dependence on geometry —  and
— enters through (, ) and ultimately the ( ).
For our particular problem, =15 if we freeze (fix)
all parameters except and (such that , = 2),
= 8 if we freeze only and (such that . =15),
= 6.

In the context of design, optimization, and con-
trol, we require very rapid response and many out-
put evaluations. Our goal is thus to construct an
approximation to u( ), u( ), and hence approxima-
tionto ( ), ( )= (u( )), whichis (i) certi ably
accurate, and (ii) very efficient in the limit of many
evaluations. By the former we mean that the error
in our approximate output, ( ) (), is guar-
anteed to be less than a prescribed tolerance by
the latter we mean that, following an initial ed
investment, the additional incremental cost to eval-
uate ( ) for any new is much less than the
effort required to directly compute ( )= (u( ))
by (say) standard finite element approximation.

Reduced-Basis ppro imation
Reduced-basis methods (e.g., [5, 6, 7]) are
a “parameter-space” version of weighted-residual
(here Galerkin) approximation. To define our
reduced-basis procedure, we first introduce a sam-
ple set in parameter space, ¥ = ,..., n ,and
associated reduced-basis space v

= span
u( ), =1,...,N , where u( ) satisfies (1) for

= (note ¢ refers to the  component of
the —tuple , whereas  refers to the —tuple
in V). We then require our reduced-basis approxi-

mation to u( ) for any given , u™( ) N ,

to satisfy

(w™( ), (), o

the reduced-basis approximation to ( ) can subse-
quently be evaluated as V()= (u( ).
It is a simple matter to show that

) = (3)

w( ) uN() — min wu() ¥

7 (4)

which states that our approximation is optimal in
the  norm. It can also be readily shown for our
particular problem that

where ¥ =wu V. It follows from (4),(5), and the

continuity of that

2
—( min

() M0O) u( ) (6)

thus our output approximation is also optimal.

We must, of course, also understand the extent
to which the best ~ in ¥ can, indeed, approx-
imate the requisite temperature distribution. The
essential point is that, although % clearly does
not have any approximation properties for general
functions in , simple interpolation arguments in
parameter space suggest that v should approx-
imate well u( ) even or very modest N indeed,
exponential convergence is obtained in N for suf-
ficiently smooth -dependence (e.g., [6, 7]). It is for
this reason that, even in high-dimensional (large )
parameter spaces, reduced-basis methods continue
to perform well — indeed, thanks to (6), much bet-
ter than ad oc, uncontrolled “non-state-space” fits
of ( , ( )) input-output pairs.

We now turn to the computational issues. We
first express the reduced-basis approximation as

and choose for test functions = ;( ), =1,...,N.
We then insert these representations into (3) to yield
the desired algebraic equations for u™( ) RY,

Equation (8) can be written in matrix form as

A( ™) =_, (9)
where A( ) TRYM ¥ is the SPD matrix with entries
Az(): ( ) 1 )71 ) Naa‘nd_ RV is
the “load” vector with entries ; = ( ;),1 N.



We now invoke (2) to note that

where the matrices A RY " are given by A, =
()1 , N, =1,..., The off-
line on-line decomposition is now clear. In the o -
line stage, we construct the A, =1,..., . Inthe
on-line stage, for any given , we first form A from
the A according to (10) we next invert (9) to find
uV( ) and we then compute V()= (uVV( )) =
(wN( )= (@"()) _. As we shall see, N will typ-
ically be (10) for our particular problem. Thus,
as required, the incremental cost to evaluate ~( )
for any given new is very small: (N2 ) to form
A() (N ) to invert (the typically dense) A( )
system and (N) to evaluate () from u™( ).
The above a priori results tell us only that we
are doing as well as possible it does not tell us o
well we are doing. Since the error in our output is
not known, the minimal number of basis functions
required to satisfy the desired error tolerance can
not be ascertained. As a result, either too many
or too few functions are retained the former results
in computational inefficiency, the latter in unaccept-
able uncertainty. We thus need a posteriori error
bounds as well.

Output Bounds

To begin, we assume that we may find a function
g( ): R and a symmetric continuous coercive
bilinear form R such that

P () ) ), ; :
(11)
for some real positive constant _ for our thermal fin
problem we can readily find a g( ) and ( , ) such
that (11) is satisfied. The procedure is then simple:
we first compute ( ) solution of

g() CC))= () :

where () () (&N,
then evaluate our bounds as

MOy= "), M) =

(12)

) is the residual we

MOy M), )
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where (), the bound gap, is given by

(14)

The notion of output bounds is not restricted to
reduced-basis approximations: it can also be applied
within the context of finite element discretization as
well as iterative solution strategies [8, 9].

We can then show that

M) M), N (15)

we thus have a certi cate o delity for VN — it is
within V( )of ( ). To prove the left inequality we
appeal to (5) and the coercivity of . To demonstrate
the right inequality we first note that ( V( ) )=
(M) WO, ) )= (M), NO) )
since (M()) = (u, () ) from (1) for =
N() we next choose = () in (12) to obtain

g( ) (), M )= ("), () ) then from
the right inequality of (11) we have

> g() (N,

from the left inequality of (11) we thus conclude that
N(y> (", M) a comparison of (5) and (13)
then completes the proof.

We can now ascertain, through ¥, the accu-
racy of our output prediction, which will in turn
permit us to adaptively modify our approximation
until the prescribed error tolerance is satisfied.
However, it is also critical that ~( ) be a good
error estimator a poor estimator will encourage us
to unnecessarily refine an approximation which is,
in fact, adequate. To prevent the latter the effectiv-
ity V() NC) () N() should be order
unity. For our problem it is simple to prove that

Ny _, independent of and N in practice,
effectivities are typically less than 10, which is ade-
quate given the rapid convergence of reduced-basis
approximations.
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We now turn to the computational issues. From
(2) and (7), (12) can be re-written as

() )=
1

() (™) (),

9() 11

We thus see from simple linear superposition that
() can be expressed as

N

()=—=( (™) ),

1
g( ) _

? ) = ()a ’
=1,...,N, = 1,..., , satisfies

(), . It then follows that
N() of (14) as

where satisfies  (

and ,
(a):

wWe can express

(16)

N( ) then directly follows from (13).
The off-line on-line decomposition is now clear.
In the o -line stage we compute and , =
1,...,N, =1,..., , and then the inner products
, ,and defined in (16). In the on-line stage,
for any given new , and given ~( ) and u’V( ) as
computed in the on-line stage of the output predic-

tion process (Section 2), we evaluate ~( ) as
o= 2 T (w
g( ) —
N N

and then evaluate N( )= V() N( ). The in-
cremental cost to evaluate ~( ) for any given new
(N 2).

is very small:

umerical lgorithm

In the simplest case we take our field and output ap-
proximations to beu( ) =u™( Jand ( )= (),
respectively, for some given N, and then compute
N( ) to assess the error. However, we can im-
prove upon this recipe: we take u( ) = u’V( )
and ()= (), where u™( ) and () are the
reduced-basis approximations associated with a sub-
space of V., N in which we select only N of
our available basis functions. In practice, we include
in % the basis functions corresponding to sample
points closest to the new of interest we con-
tinue to (say) double our space until V()
(and hence () N() ). If we satisfy our
criterion for N N the adaptive procedure is en-
tirely contained within the on-line stage of the pro-
cedure, and the complexity of this stage is reduced
from (N2> N N2? ?2)to (N2 N N2 2).
Note the critical role that our error bound plays in
effecting this economy.

In practice — to ensure that the ,
are actually calculable — we replace the infinite-
dimensional space  with a very high-dimensional
“truth” space (e.g., a finite element space as-
sociated with a very fine triangulation). It follows
that we obtain bounds not for , but rather for

= (u ), where u satisfies (u , )=

(), . The essential point is that may
be chosen very conservatively — and hence the dif-
ference between = and rendered arbitrarily small
— since (i) the on-line work and storage are in fact
independent of the dimension of , , and (ii) the
off-line work will remain modest since N will typi-
cally be quite small.

Results and Discussion

We first demonstrate the accuracy of the reduced-
basis output prediction and output bounds by con-
sidering the case , = 5 in which = 25
and = 0.25 are fixed the remaining parameters

12, ,Bivaryin [0.1,10]  [0.01,1].
The sample points for V are chosen randomly (uni-
to which

formly) over , the new value of



we apply the reduced-basis approximation is ! =

0.5, 2 =10, =30, =9.0,Bi= 0.6 (similar
results are obtained at other points in . ). We
present in Table 1 the actual error ( ) N
the estimated error V() (our strict upper bound
for () N()) and the effectivity ~( ) (the
ratio of the estimated and actual errors). We ob-
serve the high accuracy and rapid convergence of
the reduced-basis prediction, even for this relatively
high-dimensional parameter space and the very
good accuracy (low effectivity) of our error bound

N (). The combination of high accuracy and cer-
tifiable fidelity permits us to proceed with an ex-
tremely low number of modes.

N N N N

10 | 4.68 10 1.43 10 % | 3.06

20 | 4.70 10 1.13 10 2.40

30 | 3.04 10 1.04 10 3.43

40 | 1.08 10 461 10 4.27

50 | 2.47 10 6.89 10 2.78
Ta le

As regards computational cost, in the limit of
“infinitely many” evaluations, the calculation of ( )
to within 0.1 of  is roughly 24 times faster than
direct calculationof = (u ) herew isour un-
derlying “truth” finite element approximation. The
breakeven point at which the reduced-basis approxi-
mation first becomes less expensive than direct eval-
uation of  is roughly 250 evaluations. These are
fair comparisons: our “truth” approximation here
is not overly fine, and our solution strategy for
U (an IL -preconditioned conjugate-gradient
procedure) is quite efficient. The reduced-basis ap-
proach is much faster simply because the dimension
of N, N, is much smaller than the dimension of

, (which more than compensates for the loss
of sparsity in A). For more difficult problems that
require larger , or that are not as amenable to fast
solution methods on | the relative efficiency of the
reduced-basis approach is even more dramatic.

The obvious advantage of the reduced-basis ap-
proach within the design, optimization, and control
environment is the very rapid response. However,
the “blackbox” nature of the on-line component of
the procedure has other advantages. In particular,
the on-line code is simple, non-proprietary, and com-
pletely decoupled from the (often complicated) off-
line “truth” code. This is particularly important in
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multidisciplinary design optimization, in which vari-
ous models and approximations must be integrated.
We close this section with a more applied ex-
ample. We now fix all parameters except and ,
sothat o =2 (,)varyin , = [2.0,3.0]
[0.1,0.5]. We choose for our two outputs the vol-
ume of the fin, , and the root average tempera-

ture, . As our “design exercise” we now construct
the achievable set — all those ( , ) pairs associ-
ated with some ( , ) in , the result, based on

many evaluations of ( , V) for different values of
(,) e » is shown in Figure 2. We present the
results in terms of " rather than ' to ensure that
the actual temperature  will always be lower than
our predictions (that is, conservative) and we choose
N such that % is always within 0.1 of
sure that the design process is not misled by inac-
curate predictions. Given the obvious preferences of
lower volume and lower temperature, the designer
will be most interested in the lower left boundary of
the achievable set — the Pareto efficient frontier al-
though this boundary can of course be found without
constructing the entire achievable set, many evalua-
tions of the outputs will still be required.

to en-

16 »

14+

12;

10t

4 L L L L L L L )
19 20 21 22 23 24 25 26 27
i ure

Generalizations and Issues

Many of the assumptions that we have introduced
are assumptions of convenience and exposition, not
necessity. First, the output functional need not
be same as the inhomogeneity = with the introduc-
tion of an adjoint (or dual) problem [2], our results
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above extend to the more general case. Second, the
function ¢g( ) need not be known a priori: g( ) is
related to an eigenvalue problem which can itself
be readily approximated by a reduced-basis space
constructed as the span of appropriate eigenfunc-
tions (in theory we can now only prove asymptotic
bounding properties as N , however in prac-
tice the reduced-basis eigenvalue approximation con-
verges very rapidly, and there is thus little loss of
certainty). Third, these same notions extend, with
some modification, to noncoercive problems, where
g( ) is now in fact the inf-sup stability parameter
[3, 4]. Finally, nonsymmetric operators are readily
treated, as are certain classes of nonlinearity in the
state variables (e.g., eigenvalue problems [1]).

Perhaps the most limiting assumption is (2),
affine dependence on the parameter functions.
some cases (2) may indeed apply, but  may be
rather large. In such cases we can reduce the com-
plexity and storage of the off-line and on-line stages
from ( 2)to ( ) by introducing a reduced-basis
approximation of the error equation (12) for a suit-
ably chosen “staggered” sample set . and associ-
ated reduced-basis space constructed as the span of
appropriate error functions. These ideas also extend
to the case in which the parameter dependence can
not be expressed (or accurately approximated) as in
(2) however we now need to at least partially aban-
don the blackbox nature of the on-line stage of com-
putation, allowing evaluation (though not inversion)
of the truth-approximation operator, as well as stor-
age of some reduced-basis vectors of size . These
methods are currently under development. For more
information and access to interactive examples, see
the web site http: augustine.mit.edu .

In
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the adjoint approach for those unfamiliar with the
method.
As an example, consider the differential equation

((@u(@) wu(@)= (z) z (0,1)

u(0) =0, wu(l)=0. M)

Given the coefficient (x), u(z) = u( )(z) is the so-
lution of (1). Now suppose we wish to find (z) that
minimizes some functional of u(x), say, the least-
squares functional

where u (z) is some given target. Such a func-
tional might arise in parameter estimation, where we
are attempting to estimate (z) from observations
u (z), or optimal design, where we are attempting
to choose (z) in order to obtain some preferred be-
havior u (z). The question we consider is how one
computes the derivative () of ( ) with respect
to for use in a derivative-based optimization tech-
nique.

Abstractly, we have a nonlinear program of the
form

()=rC,ul))
()= (,u()) =0,
where, given the design variables , we compute the

state variable u( ) by solving some manner of differ-
ential equation

minimize
. (3)
subject to

(su()) =0 (4)

We can take advantage of the structure introduced
by (4) when computing derivatives of and

quic and dirty calculation

We proceed formally. By the chain rule,

()=1 ()=

Implicit differentiation of (4), yields

u

-

v 12

The appeal to the implicit function theorem requires ustification in the general setting of the dependence on  of

since
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Thus,

he sensitivity equations

Formula (5) corresponds to what is known as the
sensitivity e uations approach to computing deriva-
tives. In a computational setting, suppose that there
are

design variables: = (1, , ),
state variables:  u = (uq,
constraints: =(1, 5 )

Then the dimensions of the matrices in the product
(5) are

This calculation of () and ( ) entails mul-
tiplication of the columns of by !. That is,
we must solve the linearized state equation (repre-
sented by the linearized operator ) for different
right-hand sides. Thus, the cost of computing ()
via (6) grows with the number of inputs (indepen-
dent variables) For those readers familiar with
automatic differentiation, we note that this order of
calculations corresponds to the forward mode of au-
tomatic differentiation.

()

may represent such quantities as coe cients in di erential operators, boundary values, or the geometry of the domain

on which the problem is posed. In practice, it is sometimes di cult and even impossible to verify that the ob ective and

constraints are truly di erentiable.



Volume 11 Number 2 August 2000

he ad oint approach

For a finite-dimensional problem, we can transpose
(6) to obtain

o= 75 750

_ 0 =

This calculation requires only one application of

to compute (), and applications of to

compute (). After transposition of (6), the cost

thus depends on the number of outputs. This order

of calculations corresponds to the reverse mode of
automatic differentiation.

The adjoint approach is the infinite-dimensional
analog of this transposition. The infinite-
dimensional situation is more complicated, since

(), f,f,etc., are now linear functionals on pos-
sibly infinite-dimensional spaces of functions. Nev-
ertheless, the transposition in (7) is the basic idea
underlying the adjoint approach.

The quantity = f that arises in com-
puting ( ) is called the costate. One similarly
computes costates for the columns of ()-

he model problem

We illustrate the adjoint approach for the model
problem (1)—(2). It is convenient to view (1) in the
weak form, so that u 10,1] and

1

[ (@)u(z) (&) w(@) ()] = (8)

for all !, Then ( ,u( )) = 0 is defined by
(8). Note that takes its value in the space of lin-
ear functionals acting on

The adjoint equation = f 1is then given

(9)
(z)] =

between two linear spaces

u(z)

For a linear map

dual spaces and defined by

for all
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for all 1 where | represents the dual-
ity pairing between linear functionals and the ar-
guments they act on. We recognize (9) as the weak

form of the ad oint problem

This gives a formula and a representation for the lin-
ear functional () in terms of integration against
the function (z)u (z). However, the function

(z)u (z) may or may not be suitable as a direction
of steepest descent, and may require further smooth-
ing depending on the application.

Some comments

Note that the adjoint approach is more efficient when
one has fewer dependent variables (i.e., outputs
and ) than independent variables (design variables

), while the sensitivity equations are more efficient
if the situation is reversed. If one has a large number
of both inputs and outputs, then one approach or the
other may be more efficient relative to the other, but
either will be expensive in absolute terms.

What about second derivatives nfortunately,
there is no especially efficient way to compute second
derivatives. The analytical calculation of a second
derivative requires an application of both ! and

Finally, we allude to interesting problems that
can arise in connection with the costate and the
adjoint problem. The costate is actually a linear
functional, and as such, it can “look” rather strange
if one tries to interpret it as a function in the usual
sense (for instance, consider the delta function). For

and , the ad oint

and

is a map between the
. The appearance of the dual spaces of

infinite-dimensional spaces is what sometimes makes the interpretation of the transposition in (7) a bit subtle.



12

some problems, the nature of can interact with
the definition of the adjoint problem to make some
approaches to deriving the adjoint problem break
down. This in turn, has led some authors to con-
clude that the adjoint approach cannot be applied
to their problem. This is, in fact, not the case, if
the nature of and the adjoint problem are prop-
erly understood. For a discussion of these subtleties,
see [4].

istorical note

To the author’s knowledge, the earliest uses in print
of the technique we now call the adjoint approach
appear in [3, 2]. The adjoint approach is sometimes
attributed to Lions in [5], but what Lions uses is the
Karush-Kuhn-Tucker system of necessary conditions
for (3)-(4) (absent constraints) formulated as

f(Ou)
(,u)=0.

minimize

(10)

subject to

Treatment of (4) as equality constraints in the con-

text of generalized reduced gradient algorithms also

led early on (e.g., [1] ) to techniques that may be

viewed as antecedents of the adjoint approach. In-

deed, the reader familiar with variable reduction

techniques will note that the formulae (6) and (7)

correspond to formulae for the reduced gradient of f

with respect to the equality constraints ( ,u) =0
in (10).
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Introduction

-constrained optimi ation is a frontier problem
in computational science and engineering. All PDE-
constrained problems share the difficulty that PDE
solution is just a subproblem associated with opti-
mization. Thus, the optimization problem is often
significantly more difficult to solve than the simu-
lation problem. We are particularly interested in
large-scale problems that require parallel computing
to make them tractable.

To illustrate the main issues, let’s consider a
model problem of optimal distributed control of a
Navier-Stokes flow:

min ( , , )=
1
5 )+ ( )5
subject to:

( ) () = in
= in
= on

Here, is the fluid velocity field, the pressure field,

the body force control function, a weighting pa-
rameter, and the inverse of the Reynolds number.
The objective is to minimize the rate of dissipation
of viscous energy and a cost associated with a body
force control function. The constraints are the sta-
tionary incompressible Navier-Stokes equations with
Dirichlet boundary conditions.
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We can form a Lagrangian functional, and re-
quire its stationarity with respect to the state ( , )
and optimization ( ) variables and the Lagrange
multipliers. Taking variations and invoking the ap-
propriate Green identities, we arrive at the following
first-order necessary conditions:

Ad oint E uations

( ) ) O )

in

= on

State E uations

= in

= on
Control E uations
= in

The state equations are just the original Navier-
Stokes PDEs. The ad oint e uations, which result
from stationarity with respect to state variables, are
themselves PDEs, and are linear in the Lagrange
multipliers and . Finally, the control e uations
are (in this case) algebraic.

Thus we end up with a large, coupled, unstruc-
tured system of optimality conditions (or at least
bigger, more coupled, and less structured than seen
by a Navier-Stokes solvers). How to go about solving
it The usual way is to eliminate state variables and
Lagrange multipliers and, correspondingly, the state
equations and adjoint equations to reduce the sys-
tem to a manageable one in just the control (i.e. de-
cision) variables . Here’s one way to do this: given

at some iteration, we solve the state equations for
the state variables , . Knowing the state variables
then permits us to solve the adjoint equations for the
Lagrange multipliers , . Finally, with the states
and multipliers known, we can update by iterat-
ing on the control equation. The whole process is
repeated until convergence. This elimination proce-
dure is termed a reduced space method, in contrast
to a ull space method, in which one solves for the
states, controls, and multipliers simultaneously.
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Reduced space methods are attractive for several
reasons. Solving the subsets of equations in sequence
imparts some structure to the problem. State equa-
tion solvers build on years of development of large-
scale parallel PDE solvers. Adjoint PDE solvers
don’t exactly grow on trees—but the strong simi-
larities between the state and adjoint operators sug-
gest that an existing PDE solver for the state equa-
tions can be modified easily to handle the adjoint
system (at least on a good day). Finally, the con-
trol equations are usually reasonably tame, at least
to evaluate. Another advantage of reduction is that
the full space system is often very ill-conditioned,
whereas the three subsystems are typically better
conditioned.

On the other hand, the big disadvantage of re-
duced methods is the need to solve the state and
adjoint equations at eac iteration of the reduced
system—a, direct consequence of the reduction onto
the decision variable space. So it’s natural to go
back to the full space, and ask if it’s possible to solve
the entire optimality system simultaneously, but re-
tain the structure-inducing, condition-improving ad-
vantages of reduced space methods—while avoiding
their disadvantages.

In this article, we present such a method. The
key idea is to solve in the full space using a Newton
method, but precondition with a quasi-Newton re-
duced space method. The Karush-Kuhn-Tucker sys-
tem arising at each Newton iteration is solved using
a Krylov iterative method, and it is this system to
which the preconditioner is applied. We have found
that the reduced space preconditioner is very effec-
tive in reducing the number of Krylov iterations, and
applying it captures the favorable structure of re-
duced methods. On the other hand, since the reduc-
tion is used just as a preconditioner, we can cheat on
the state and adjoint solves, replacing them with ap-
proximations which could be their own precondition-
ers. So we arrive at a method that combines rapid
convergence in the outer Newton iteration (typically
mesh-independent), with fast convergence of the in-
ner Krylov iteration (which can be as good as mesh-
independent). We don’t even need to compute sec-
ond derivatives—since a Krylov method is used to
solve the KKT system, we can apply the usual di-
rectional differencing trick to approximate the La-
grangian Hessian—vector product.
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Why the name agrange- e ton- rylov- ¢ ur

It is common in PDE-solver circles to use the phrase

e ton- rylov- to refer to Newton methods for
solving PDEs that employ Krylov linear solvers,
with  as the preconditioner for the Krylov method.
Since agrange- e tomn is sometimes used to de-
scribe a Newton method for solving the optimality
system (a.k.a. an S P method), and since a reduced
space method can be viewed as a Schur complement
method for the KKT system, we arrive at the con-
catenation . It’s a mouthful, but it preserves
the tie to modern PDE solvers, whose use of approxi-
mate decompositions as preconditioners inspired this
approach [6]. David Keyes suggested (a variation of)
this name in his plenary talk at the 1999 combined
SIAM Optimization Annual meeting [5].

In the remainder of this article, we give a brief
overview of the LNKS method and some sample re-
sults for an optimal flow control problem on a Cray
T3E. Further details can be found in [2], and more
extensive discussion and results in forthcoming arti-
cles that focus on the inner Krylov iteration [3] and
the outer Newton iteration [4]. We note finally that
Battermann and Heinkenschloss have presented a
somewhat different method for preconditioning KK'T
matrices that also makes use of state and control
space decompositions [1].

Reduced Space Methods

In this section we discuss reduced space S P meth-
ods, concentrating on the discrete form of a typical
PDE-constrained optimization problem:

min f( ) subject to ()= ,
are the state and decision variables, f is
the objective function and are the discretized state

equations. sing Lagrange multipliers
fine the Lagrangian function by

(, )=1r0)

where

, we can de-

()

The first order optimality conditions require that the
Lagrangian gradient vanish:
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where is the gradient of the f and  is the Jaco-
bian matrix of the constraints. A Newton step on
the optimality conditions (which, in the absence of
inequality constraints, is Sequential uadratic Pro-
gramming) is given by:

where is the Hessian of the Lagrangian func-
tion with respect to the optimization variables,
is the search direction in , and is the updated
Lagrange multiplier. This system is known as the
Karush-Kuhn-Tucker (KKT) system, and its coef-
ficient matrix as the KKT matrix. To exploit the
structure of the state constraints, we partition the
optimization variables into state variables and
decision variables . The partitioned KKT system
becomes:

= (1)

This system is of dimension 2 , where is the
number of state variables and  the number of deci-
sion variables. State-of-the-art algorithms for PDE-
constrained optimization exploit two facts. First,
nobody wants to compute second derivatives—it’s
hard enough convincing the PDE solver community
of the need for first derivatives. (No doubt this dif-
ficulty will be mitigated by continuing advances in
automatic differentiation tools.) And second, every-
body wants to use existing software for “inverting”
the state Jacobian. Since this is the kernel step in
a Newton-based PDE solver, there is a large body
of work to draw from. For example, for elliptic
PDEs, there exist optimal or nearly-optimal paral-
lel algorithms (e.g. domain decomposition methods
or multigrid) that require algorithmic work that is
linear or weakly superlinear in , and scale to thou-
sands of processors and millions of variables.

One way to exploit existing PDE-solvers is to
eliminate the state and adjoint equations and vari-
ables, and then solve an unconstrained optimization
problem in the remaining decision space (this is sim-
ilar to the argument of the previous section, except
here we are linearizing first, then eliminating, as op-
posed to vice versa.) We refer to this as e ton
reduced (or N-RS P), and it can be derived
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by block elimination on the KKT system: Given ,
solve the last block of equations (the state system)
for then solve the first (the adjoint system) to
find , and finally solve the middle (the decision
system) for . It is easy to verify that this block
elimination is equivalent to the following block fac-
torization of the KKT matrix:

(2)

where the reduced Hessian matrix is defined by

1

and the “cross-Hessian” by

Note that these factors can be permuted to block
triangular form, so we can think of this as a block

factorization of the KKT matrix. It is clear that
the only linear systems that need to be solved have
either the state Jacobian or its transpose as their
coefficient matrix—a “solved problem”—or else the
reduced Hessian  , which is dense and of dimension
of the decision space. Thus, reduced methods are
particularly attractive when the the decision vari-
ables are much fewer than the states.

But two problems remain. First are the sec-
ond derivative terms. Second, and more problem-
atic, is the need for  solutions of the (linearized)
state equations for construction of ! in
This is particularly troublesome for large-scale 3D
problems, where (linearized) PDE systems are usu-
ally solved iteratively, and solution costs cannot be
amortized over multiple right hands as effectively as
with direct solvers. When the simulation problem
is an overnight run on a large parallel machine, this
requirement effectively rules out the use of N-RS P.

A popular technique that addresses these two
difficulties is a quasi-Newton RS P ( N-RS P)
method that replaces the reduced Hessian with
a quasi-Newton approximation , and discards all
other Hessian terms. This corresponds to the follow-
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ing approximation of the KKT block factors:

3)

It is easy to verify that just two state solves per iter-
ation are required (actually one linearized state, and
one adjoint), as opposed to the of N-RS P. And
with Hessian terms either approximated or dropped,
no second derivatives are needed. A measure of
the success of N-RS P is its application to nu-
merous optimal control, optimal design, and inverse
problems governed by PDEs from linear and nonlin-
ear elasticity, incompressible and compressible flow,
heat conduction and convection, phase changes, flow
through porous media, etc. Of course, something has
to give, and that is the convergence rate: a reduction
from quadratic in the Newton case to two-step su-
perlinear. Moreover, the number of iterations taken
by N-RS P depends on the conditioning of the re-
duced Hessian, and often increases as the number of
decision variables grows, rendering large-scale prob-
lems intractable. In the next section, we propose a
method that combines the fast convergence of New-
ton’s method with the structure-exploiting proper-
ties of reduced methods.

S: rylov solution of the
system ith appro imate
-RS P preconditioning

In this section, we present a method for solving the
KKT system (1). For optimization problems con-
strained by 3D PDEs, sparse factorization of the
KKT matrix is not an option—such methods are
not viable for  , let alone the entire matrix. In-
stead, we use a Krylov iterative method, specifically
the quasi-minimum residual ( MR) method. How-
ever, the varying scales between Hessian and Jaco-
bian terms in the KK'T matrix, and its indefiniteness,
demand an effective preconditioner. This precondi-
tioner must be capable of exploiting the structure of
the state constraints (specifically that good precon-
ditioners exist for ), must be cheap to apply, and
must be effective in reducing the number of Krylov
iterations. The N-RS P method described in the
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previous section fits the bill. Applying the precondi-
tioner amounts to solving with the N-RS P factor-
ization (3), except that state Jacobians are replaced
by their approximations

(4)

Replacing with is permissible, since N-
RS P is being used as a preconditioner. A good
choice for is, in turn, one of the available pre-
conditioners for =~ —for many PDE operators, there
exist near-spectrally-equivalent preconditioners that
are both cheap to apply (typically linear or weakly
superlinear in problem size) and effective (resulting
in iteration numbers that are independent of, or in-
crease very slowly in, problem size).

With (4) used as a preconditioner, the precon-
ditioned KKT matrix ends up having the following
form:

where

For exact state equation solution, = and =
, and we see that the N-RS P preconditione
clusters the spectrum of the KKT matrix, with
all eigenvalues either unit or belonging to L
Therefore, when is a good preconditioner for the
state Jacobian, and when is a good approxima-
tion of the reduced Hessian (as it should be asymp-
totically), we might expect the N-RS P precondi-
tioner (4) to be effective in reducing the number of
Krylov iterations (but note that the preconditioned
KKT matrix is non-normal, so a rigorous analysis

requires well-conditioned eigenvectors).

How scalable is the method, with respect to in-
creasing problem size and number of processors For
scalability, we require that the work increase near-
linearly with problem size (algorithmic scalability)
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and that it parallelizes well (parallel scalability). Let
us examine the major components:
ormation of the T matrix ve tor rod
u t. For PDE-constrained optimization, the Hes-
sian of the Lagrangian function and the Jacobian
of the constraints are usually sparse with structure
dictated by the mesh (particularly when the deci-
sion variables are mesh-related). Thus, formation
of the matrix-vector product at each MR itera-
tion is linear in both state and decision variables,
and parallelizes well due to a high computation-to-
communication ratio and minimal sequential bottle-
necks.
A i ationofthe N S P re onditioner.
The main work involved is application of the state
Jacobian preconditioner and its transpose, and
“inversion” of the quasi-Newton approximation to
the reduced Hessian, . We can often make use of
scalable, parallel state Jacobian preconditioners that
requires () work to apply (as in various domain
decomposition preconditioners for elliptic problems).
Furthermore, when  is based on a limited-memory
quasi-Newton update (as in our implementation), its
work is also linear in the decision variables, and the
vector operations are easily parallelized (or as eas-
ily as vector inner products can be). Therefore, we
conclude that application of the N-RS P precon-
ditioner requires linear work and parallelizes well.
The rylov inner iteration. As argued above,
with an “optimal” state preconditioner and a good
approximation, we can anticipate that the num-
ber of inner, Krylov iterations will be relatively in-
sensitive to the problem size.
The a ran e Ne ton outer iteration. The
number of outer, Newton iterations is often indepen-
dent of problem size for PDE-type problems, and the
problems we have solved exhibit this type of behav-
ior as well.

This combination of linear work per Krylov itera-
tion, weak dependence of Krylov iterations on prob-
lem size, and independence of Lagrange-Newton iter-
ations on problem size suggest a method that scales
well with increasing problem size and number of pro-
Cessors.

How well does the LNKS method work in prac-
tice Here, we quote a set of representative results
from many we have obtained for up to 1.5 million
state variables and 50,000 control variables on up
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to 256 processors. The problem is optimal Navier-
Stokes flow control, similar to that of Section 1, ex-
cept that the controls are boundary velocities. The
specific problem is control of 3D flow around a cylin-
der at subcritical conditions, with controls on the
downstream side of the cylinder. Approximation
is by Galerkin finite elements, both for state and
control variables. We have implemented the LNKS
method on top of the PETSc library for parallel solu-
tion of PDEs from Argonne. The table shows results
for 64 and 128 processors of a Cray T3E for a roughly
doubling of problem size. Results for the N-RS P
and LNKS algorithms are presented. In the table
LNKS-E refers to exact solution of the linearized
Navier-Stokes equation within the N-RS P pre-
conditioner, whereas LNKS-PR refers to application
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of a block-Jacobi (with local IL (0)) approximation
of the linearized Navier-Stokes operator. LNKS-PR-
TR uses a truncated Newton method and avoids
fully converging the KKT system for iterates that
are far from a solution.

The results in the table reflect the independence
of Newton iterations on problem size, the mild de-
pendence of KKT iterations on problem size, and the
resulting reasonable scalability of the method. It is
important to point out here that the Navier-Stokes
discrete operator is very ill-conditioned, and there is
room for improvement of its domain-decomposition
preconditioner. The performance of the N-RS P
KKT preconditioner would improve correspondingly.
A dramatic acceleration of the LNKS algorithm is
achieved by truncating the Krylov iterations.

states re onditionin Ne ton iter avera e T iter time hours
ontrols
389,440 N-RS P 189 — 46.3
6,549 LNKS-E 6 19 27.4
(64 procs) LNKS-PR 6 2,153 15.7
LNKS-PR-TR 13 238 3.8
615,981 N-RS P 204 — 53.1
8,901 LNKS-E 7 20 33.8
(128 procs) LNKS-PR 6 3,583 16.8
LNKS-PR-TR 12 379 4.1

More detailed results are given in [2, 3, 4]. These
references also discuss the important topics of glob-
alization and the details of the inexactness in solv-
ing the KKT system, which were not mentioned here
for reasons of space. Another issue is additional in-
equality constraints we have recently implemented
with Andreas Wachter and Larry Biegler a parallel
version of their interior point method for treating
such constraints, within the context of LNKS. Fi-
nally, this summer we will be releasing a publicly-
available software library for parallel solution of
PDE-constrained optimization problems, built on
top of the PETSc system, and including LNKS and
other methods.
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