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ABSTRACT
Graphs are powerful and versatile data structures that can be used to represent a wide range of different
types of information. In this article, we introduce amethod to analyze and then visualize an important class
of data described over a graph—namely, ensembles of paths. Analysis of such path ensembles is useful in a
varietyof applications, indiversefields suchas transportation, computer networks, andmolecular dynamics.
The proposed method generalizes the concept of band depth to an ensemble of paths on a graph, which
provides a center-outward ordering on the paths. This ordering is, in turn, used to construct a generalization
of the conventional boxplot or whisker plot, called a path boxplot, which applies to paths on a graph. The
utility of path boxplot is demonstrated for several examples of path ensembles includingpaths definedover
computer networks and roads. Supplementary materials for this article are available online.

1. Introduction

Making sense of sets of information defined over graphs can
often be a challenging task. This is because graphs are typically
used to represent abstract data that may not be easily repre-
sentable in a flat, or Euclidean, space. Here, we define a graph
G(V,E,W ) as a set of vertices (or nodes)V , a set of edges E ⊆
V ×V and a set of edge weights,W : E �→ R

+, assigned to each
edge. In this article, we describe a method to gain insight into a
particular type of data represented on graphs—namely, collec-
tions or ensembles of paths on graphs, henceforth referred to as
path ensembles. We define a path (a special type of subgraph) as
a sequence of vertices p = (vi : 1 ≤ i ≤ m), where vi ∈ V and
each consecutive pair of vertices in the sequence have an associ-
ated edge, (vi, vi+1) ∈ E ∀ i = {1, . . . ,m − 1}.We define a path
ensemble as a collection of paths on a particular graph.

Paths on a graph are natural structures used to describe and
analyze data in a range of applications. For instance, in trans-
portation urban planners study ensembles of paths of com-
muters (e.g., from recorded GPS data) to identify important
travel corridors to plan new routes (Evans et al. 2013). Anal-
ysis is performed on a graph whose vertices are usually tran-
sition points (road intersections, airports). These vertices have
a geographical location and an abstract, logical meaning. The
edges in the graph represent direct transportation connections
between vertices (segments of roads, routes of airplanes), and
they often encode, as weights, information about transit time
or cost. A path on this graph is an abstraction of a commuter’s
path.

In computer networks, system administrators try to detect
anomalies or attacks by keeping track of the paths taken by
the network traffic over a period of time (Butler et al. 2010).
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Analysis is performed on a graph whose vertices are Internet
subdomains known as autonomous systems (ASes) and edges
represent a direct data link between ASes, which can encode,
as weights, transfer capacity. A path on this AS graph represents
path of a packet on the Internet.

In molecular dynamics where scientists are interested in
studying the protein folding process, various possible configu-
rations (also known as states) of a specific protein structure are
known while the sequence of discrete intermediate states in the
process of protein folding is not. Analysis is performed on a
configuration graph whose vertices represent the possible pro-
tein configurations and weights on edges denote the respective
transition probabilities between the associated pair of configu-
rations. In this case, a path is a sequence of potential discrete
intermediate states and may be identified by carrying out sim-
ulations that incorporate stochastic transitions. These simula-
tions result in an ensemble of possible paths for a folding process
on the graph associated with a molecule (Apaydin et al. 2003).
In path analysis (Wright 1934), graphs are used tomodel depen-
dencies (encoded as edges) among a set of variables (encoded
as vertices). Direct and indirect dependencies between variables
can be represented as edges and paths, respectively, in a model
(graph).

Recently, researchers began considering the problem of sys-
tematically analyzing and visualizing path ensembles. One of
the first challenges is how to summarize or aggregate the infor-
mation in path ensembles. One approach of aggregation relies
on specialized heuristics that often incorporate statistics of low-
dimensional descriptors of paths. In road networks, the average
travel time between two nodes becomes a salient feature (Hua
and Pei 2010). In the analysis of computer networks, one might
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quantify the amount of traffic passing through a node in a com-
puter network (Butler et al. 2010). In molecular dynamics, the
product of transition probabilities along folding paths is consid-
ered (Apaydin et al. 2003).

Another aggregation approach proposed by researchers is
to compare paths directly, rather than using low-dimensional
descriptors. Aggregate operations on path ensembles often rely
on a definition of the distance between two paths such as Haus-
dorff (Von Landesberger et al. 2011) or Fréchet (Eiter and
Mannila 1994) metrics, which are, in turn, based on distances
between individual vertices. From these distances, one can gen-
eralize the classical notions of statistical summaries such as
median andmean (Evans et al. 2012; Agarwal et al. 2014), as well
as clustering (Kharrat et al. 2008). Such aggregate characteristics
for a path ensemble can help in understanding the structure of
the ensemble.

To fully understand structure of path ensemble by evaluat-
ing relationships between paths, applications need to consider
not only distances between vertices in a path, but also patterns
or differences in the (global) structure or shapes of paths. For
instance, some paths may deviate from a central or most repre-
sentative path, but may deviate in either typical or atypical ways.
State-of-the-art aggregation techniques for path ensembles typ-
ically ignore the relationships that may exist between patterns of
vertices in a path.

A growing body of research in analysis methods based on
the notion of data depth robustly account for nonlocal relation-
ships (correlation) among variables inmultidimensional data, in
essence capturing their global structure faithfully. Data depth is
amethod fromdescriptive statistics that provides a way to quan-
tify centrality of multivariate points in an ensemble and derive a
center outward ordering, with few assumptions about the under-
lying distribution. Data depth has been shown to generalize
to multidimensional data, and data depth formulations, which
account for relationships among variables, have been developed
for specialized data types such as functions (López-Pintado and
Romo 2009; Sun andGenton 2012), isocontours (Whitaker et al.
2013), and curves (Mirzargar et al. 2014; López-Pintado et al.
2014). Motivated by formulations of data depth for ensembles
of multidimensional data, we propose a generalization of data
depth for path ensembles on graphs, which we call path band
depth. At a high level, our generalization comprises of the fol-
lowing two parts, which it shares with earlier formulations for
functions and curves: (i) definition of band formed by a set of
ensemble members and (ii) definition of path band depth. We
also propose a visualization strategy for path ensembles, which
we call path boxplots, based on the order statistics induced by the
depth assigned to the paths.

This article is organized as follows. In Section 2, we briefly
discuss distance metrics that are currently used to analyze path
ensembles. This is followed by the notion of data depth and band
depth, a type of data depth, and its existing formulations to spe-
cialized data types such as functions and curves. In Section 3, we
develop our generalization of band depth for paths. In Section 4,
we develop our proposed path boxplot visualization strategy. In
Section 5, we compare our generalization to distance metric-
based alternatives using synthetic data and present two real
applications: transportation and computer networks.

2. Background and RelatedWork

We begin with a brief discussion of current methods for analy-
sis of path ensembles. To select a representative path, Evans et al.
(2012, 2013) proposed a generalization ofHausdorff distance for
sets of vertices on graphs, which they call network Hausdorff
distance (NHD). The classical Hausdorff distance is a measure
of dissimilarity between sets and is defined as the maximum of
distances from a set of points to their respective nearest neigh-
bor in another set. For paths, we let pa and pb denote the sets of
vertices for two paths within a weighted graph, then the network
Hausdorff distance is defined as (Evans et al. 2013)

dH(pa, pb) = max
va∈pa

min
vb∈pb

dg(va, vb), (1)

where dg(va, vb) is the geodesic (or shortest path) distance
between vertices va and vb. The path minimizing the sum of
distances from all other paths in an ensemble is the most rep-
resentative path, a natural generalization of the median.

Alternatively, Eiter and Mannila (1994) used the discrete
Fréchet distance (DFD) between paths, as an approximation of
the classical Fréchet distance. It relies on the set monotonic
orderings of the vertices (correspondences or parameterization
between paths). The length associated with a correspondence
between two paths is defined as the maximum geodesic dis-
tance between corresponding vertices, and the DFD distance
is defined as the minimum length over all possible correspon-
dences. Aswith functions, point-basedmetrics of geometric dis-
tances, such as NHD and DFD, generally do not account for the
overall, global structure of objects (paths in this case). Therefore,
although such metric account for worst-case, vertex distances,
they do not capture what is generally referred to as shape differ-
ences in the geometric setting.

This article proposes a method for exploratory analysis or
visualization of path ensembles on graph, with consideration
of their global structure. The proposed approach is motivated
by the univariate boxplot (see Figure 1(a)) introduced by Tukey
(Tukey 1977) as an exploratory data analysis tool, based on data
depth to summarize the descriptive statistical summaries of an
ensemble, based on rank statistics, such as: median, first and
third quartile, nonoutlyingminimumandmaximumvalues, and
identified outliers.

A widely adopted strategy for evaluating the depth of a data
sample with respect to a data ensemble is band depth. Band
depth is a formulation of data depth that relies on the proba-
bility that a data point lies between a random selection of other
points from the distribution. Formultivariate data, the simplicial
depth of a n-dimensional point is the probability of a data point
lying in the simplex formed by n + 1 (distinct) randomly cho-
sen points from the distribution (Liu 1990). Lopez-Pintado and
Romo proposed a concept of band depth for functions (López-
Pintado and Romo 2009), in a way that goes beyond point-wise
analysis of functions and provides an analysis that accounts for
nonlocal correlations that span the function domain. Sun and
Genton (2012) used this data ordering to construct functional
boxplots, a generalization of the conventional whisker plot for
visualization of ensembles of functions (see Figure 1(b)). Several
authors have proposed extensions of functional band depth to
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Figure . (a) A classic boxplot for univariate data. (b) A functional boxplot for an ensemble of functions. Themedian function is drawn in yellow, outlier functions in red. The
% and the % data envelope are shown in dark and light purple, respectively. (c) An ensemble of five functions and a sample band formed by threemember functions
(f2 , f3 , and f4) from the ensemble.

curves in n dimensions and associated boxplots (López-Pintado
et al. 2014; Mirzargar et al. 2014).

The proposed method generalizes the method of func-
tion/curve band depth for paths, and therefore we give a brief
overview of methodology for band depth on functions/curves
(López-Pintado and Romo 2009; López-Pintado et al. 2014;
Mirzargar et al. 2014). First, we consider an ensemble of n func-
tions:

E = { f1(t ), f2(t ), · · · , fn(t )} ⊂ F, fi ∈ F, (2)

where F = { f | f : R �→ R} denotes the space of continuous
functions on a compact interval. A function g falls within the
band B[ · ] formed by a set of j functions if it lies within their
min/max envelope (see Figure 1(c)). That is,

g ⊂ B
[{ fi1, . . . , fi j }] iff min

(
fi1 (t ), . . . , fi j (t )

) ≤ g(t )

≤ max
(
fi1 (t ), . . . , fi j (t )

) ∀t. (3)

Note that the band associated with a random set of functions is
the min/max envelope, and the inclusion in the band forms a
binary test that provides evidence of centrality—not to be con-
fused with other statistical summaries, such as confidence inter-
val or variance on functions.

The band depth of each ensemblemember, g, is defined as the
probability of its inclusion within the band formed by a random
selection of j other functions from the ensemble:

BD j
(
g
) = Prob

(
g ⊂ B

[{ fi1, . . . , fi j }]) . (4)

For computation, the probability in Equation (4) is expressed
as the expectation of the characteristic function on g ⊂
B[{ fi1 , . . . , fi j }], and approximated by a sample mean using all
choices of j samples from the ensemble (or a random subset, if
the ensemble is large):

Prob
(
g ⊂ B

[{ fi1 , . . . , fi j }])
= E

[
χ

(
g ⊂ B

[{ fi1 , . . . , fi j }]) ]

≈ 1(n
j

) ∑
{ fi1 ,... fi j }⊂E

χ
(
g ⊂ B

[{ fi1 , . . . , fi j )}]) , (5)

where χ(·) denotes the characteristic function.
Several practical issues are worth noting. The choice of the

number of samples j used to form the band is not specified
by the formulation, and may depend on the nature of the data
(e.g., variability, number of samples). For larger ensembles, the

total number of j-sized subsets may be too large, in which case
random subsets may be chosen. Alternatively, the number of j-
sized subsets of E may not be large enough to produce reliable
probability estimates and properly order the samples. To address
this issue, López-Pintado and Romo (2009) proposed modified
functional band depth, which replaces the characteristic func-
tion χ in Equation (5) with the measure over the domain of
f ∈ F for which the point-wise inclusion within the band holds.
This relaxation can undermine the shape discrimination prop-
erties of the depth formulation. Alternatively, Whitaker et al.
(2013) proposed an ε-modified band depth (for sets and con-
tours) that relaxes χ to allow a certain amount (e.g., percentage)
of the domain to fall outside of the band.

3. Band Depth for Paths on Graphs

In this article, we propose a formulation of band depth for ver-
tices of a graph, and extend that formulation to band depth for
paths on graphs. The strategy for building a band for paths mir-
rors the development of the banddepth for curves (i.e., functions
c : R �→ R

n) (López-Pintado et al. 2014; Mirzargar et al. 2014),
which is to establish a definition of a band for points in the range
of the function in R

n and then apply that band definition for all
points in the domain.

In R
n, the band formed by a set of j points has been for-

mulated as the convex hull of X = {x1, . . . , x j} where xi ∈
R

n ∀i ∈ {1, . . . , j} (Liu 1990). The convex hull of X , H[X ] is
the smallest convex region that contains X . H[X ] is a sim-
plex for j = n + 1 (and points in general position), and H[X ]
has measure zero for j ≤ n. For n = 1, the convex hull is the
subset of the real numbers bounded by the minimum and
maximum of the points in X . Lopez-Pintado et al., as well as
Mirzargar et al., generalized the function-band-depth formu-
lation to curves, C j(t ) = {c1(t ), . . . , c j(t )} where ci : R �→ R

n,
using the parameterized set of convex hulls for points inRn. That
is B[C j](t ) = H[{c1(t ), . . . , c j(t )}]. Here, we use a similar gen-
eralization strategy for paths on graphs, namely, a parameterized
convex hull on the vertices.

We define the length of a path p as the sum of weights along
its edges, denoted ‖p‖, while its cardinality |p| is the number of
constituting vertices. A geodesic between two vertices (u, v ) is
the path between them with the shortest length, and we denote
this geodesic distance as dg(u, v ). Geodesic (shortest) paths are
not necessarily unique in a graph. In this article, to clarify the
discussion, wewill generally assume there exists some consistent
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way to decide amongmultiple geodesics (in our implementation
we use the first geodesic found by Dijkstra’s algorithm), while
the theory and formulation can be extended to the possibility of
multiple geodesics.

We begin with a definition of the band formed by vertices
on a graph. Let us define subsets of vertices of size j as follows:
S j = {V ⊂ P(V ) : |V| = j} where P(V ) is the power set of V .
A vertex v is said to lie in the band formed by V j ∈ S j if and only
if it lies in the convex hull (Pelayo 2014) of V j on G. There are
several formulations of convex hulls of a subset of vertices V j on
G; here we propose to use the geodesic-convex hull onG, because
of its natural relationship to the simplex and convex hull band
depth in R

n. The geodesic-convex set of vertices on a graph is
a set of vertices that is closed under geodesic paths (all geodesic
paths between all vertices in the set are contained in the set). The
convex hull of a set V j , referred to as a j-simplex, is the smallest
geodesic-convex set that contains V j (and hence can be thought
of as the geodesic closure of V j). We denote the convex hull of V j
by H[V j].

To define band depth, we consider selecting j vertices inde-
pendently from a probability distribution over the vertex set V
given by ProbV (v ) where v ∈ V . From these vertices we form
V j ∈ S j. We can now ask if a vertex v falls inside the convex hull
formed by our random selection of vertices, where the prob-
ability of this event is the product of the aforementioned ver-
tex probabilities (by the independence assumption). Once in
place we can define the graph-simplex band depth of a vertex
with respect to the j-simplex to be vBD(v ) = Prob(v ∈ H[V j]),
where V j is a set of j independent samples taken from the prob-
ability distribution we have defined for vertices.

If the graph is finite, the depth of a vertex can be computed
in closed form. The band depth of v can be expressed as the
expected value of the characteristic function χ for v falling
within (or belonging to) a random j-simplex. That is,

vBD(v ) = EV j∈S j

[
χ

(
v ∈ H[V j]

)]

=
∑
V j∈S j

χ
(
v ∈ H[V j]

) ∏
vm∈Vk

ProbV (vm). (6)

This form also reveals that the proposed graph-simplex band
depth is a more general formulation of graph centrality from
graph theory (Freeman 1977). That is, the centrality of a ver-
tex in a graph has been quantified as the number of geodesic
paths that pass through that vertex (Freeman 1977), which cor-
responds to j = 2 and ProbV (v ) = 1/|V | in Equation (6). Thus,
graph-simplex band depth characterizes both the structure of
the graph itself (and the centrality of points), as well as the prob-
ability distribution on the vertices.

The extension fromvertices to paths proceeds as in the case of
curves, with some additional technicalities. For this, we formu-
late a path on a graph as a mapping p : I �→ V over an index set
I = [1, 2, . . . ,m] onto the vertex setV , andwe use the notation
p(l) to denote the vertex of path p that is mapped from index
l ∈ I . The band formed by j paths sharing a common index
set is the parameterized set of j-simplex bands formed by their
corresponding vertices. Thus, we can index a set of j paths, P j ,
such that P j(l) ∈ S j for all l ∈ I .

The formulation for testing a path p against the band formed
by a set of paths P j that are parameterized over I is

p ∈ B[P j] iff p(l) ∈ H[{p1(l)), . . . , p j(l)}] ∀l ∈ I.

(7)
The band depth of a path p is Prob(p ∈ B[P j]) where P j is a set
of j, independently drawn paths from the distribution Prob(P =
p). Similar to other notions of band depth, the path band depth
can be computed as the expectation of the characteristic func-
tion of p being in the band of a randomly chosen set from the
distribution of paths:

pBD(p) = E
[
χ

(
p ∈ B(P j))

)]
, (8)

whereP j again represents a set of j, independently drawn paths
from the distribution ProbP (p) over all possible paths P .

The expectation over the bands is approximated as a sample
mean, from a random collection of j-sized subsets of an ensem-
ble. In some cases, small sample sizesmay interfere with the abil-
ity to estimate this expectationwith sufficient accuracy to resolve
differences in samples with low band depth. Thus, modified ver-
sions can either use a measure over an index set rather than a
binary characteristic function (López-Pintado and Romo 2009)
or relax the “for all” condition in Equation (7) to allow a certain
number of vertices to fall outside the simplex band, as proposed
by Whitaker et al. (2013).

The proposed formulation for band depth on paths requires
P j and p to share a common index I , which is effectively a
discrete parameterization. However, in most applications, paths
are specified as sequences of vertices, without a corresponding
index set. Thus, one of the contributions of this work is a strategy
for forming these common index sets as part of the construction
of bands for paths.

A common index set between a collection of paths establishes
a correspondence between vertices on a path such that for each
vertex on each path there is a (nonempty) set of correspond-
ing vertexes on every other path. Because the paths may be of
different lengths, the correspondences are not unique. However,
we propose that themapping from the index set to a path should
bemonotonic with respect to the sequence of the vertices on the
path (order of the vertices in paths is respected), and thus, the
correspondences are monotonic between every pair of paths.

The correspondence between a collection of paths is com-
puted using an optimalmatching strategy, similar towhat is used
for string matching in computer science and sequence align-
ment in biological protein analysis (Needleman and Wunsch
1970). The intuition behind this method is to assign correspon-
dences such that the correspondences are monotonic and the
overall sum of geodesic lengths between corresponding vertices
along the paths is minimized. We first describe the method for
finding correspondences between two paths. Given two paths pl
and pm, an optimal correspondence is established by a pair of
monotonic mappings from a common index set I to the paths,
such that the distances between vertices are minimized. Thus,
we are trying to find two mappings that minimize:( ∑

k∈I
dg

(
pl (k), pm(k)

) )
(9)

where pl (k) is the vertex on path pl that is mapped from the
index k ∈ I and dg(, ) denotes the geodesic distance between
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Figure . Band formed by three dashed paths on a complete graphwhose edgeweights are equal to Euclidean distance between vertices (only selected edges are drawn).
The green path is completely contained within the band according to definition in Equation () while the red path falls completely outside the band. Solid blue edges
constitute the geodesics connecting vertices within graph simplices.

two vertices. This formulation generalizes to collections of paths
(>2), by minimizing the sums of all pairs of distances among
corresponding vertices in the collection of paths.

To find the correspondences among a set of paths, we use
the classical method of dynamic programming (DP) on the
matrix/tensor consisting of all possible correspondences—for
example, the Needleman-Wunsch algorithm (Carrillo and Lip-
man 1988). All pairwise distances are organized in a tensor with
an order that is the number of paths to be aligned. Thus, the
number of distances considered in the optimization is

∏ j+1
l=1 |pl |,

which grows exponentially with the number of paths forming
the band (generally, the problem is NP-Hard (Just 2001)). There
are existing efficient, approximate algorithms for large numbers
of paths (Carrillo and Lipman 1988), but that issue is beyond the
scope of this paper. For the results presented here we use j ≤ 3
and rely on the basic (full enumeration of tensor) approach for
optimization.

In Figure 2, we see a band formed by three paths— pa, pb,
and pc. Here, the elements from common index I = [1, 2, 3] are
mapped to vertices on the graph from each of the paths. Path px
is completely contained within the band as all of its vertices are
part of a j-simplex formed by corresponding vertices that are
mapped from the same element in I to pa, pb, and pc. Similarly,
we observe that no vertex from py is contained in any j-simplex.
Also, two elements from I are mapped to a single vertex in pc as
it is shorter than the other paths. Once we are able to describe
a band formed by a set of paths, we can generate order statistics
on an ensemble of paths by calculating the path band depth of
each member within the ensemble.

An ordering of the data based on path band depth read-
ily yields a set of rank statistics. The median is the path with
the highest probability of falling within a random band—(i.e.,
the deepest ensemble member). The 50% band consists of paths
whose probabilities are in upper half percentile of all probabil-
ities. The 100% envelope is formed by excluding the outliers.
We define outliers (as in Sun and Genton (2012)): pBD(p) <

pBD(pmedian) − α × (
pBD(pmedian) − pBD(p50%)

)
where p50%

is the band depth value that splits the ensemble into equal parts,
and α = 1.5 is a typical value as found in the literature (Sun and
Genton 2012). For the results shown in this article we used val-
ues of α in the range 2.4 to 3.7 to flag only the most nonrepre-
sentative paths as outliers. Furthermore, we used the modified

formulation of band depth (López-Pintado and Romo 2009), to
resolve depth with sufficient accuracy to avoid ties.

By convention, data depth formulations in flat spaces (e.g.,
simplex depth in R

n) are considered desirable if they demon-
strate a set of properties that are consistent with classical meth-
ods on certain classes of distributions. For instance, Zuo and Ser-
fling (2000) proposed affine invariance, maximal depth around
a point of symmetry, monotonic fall off with distance from a
central point, and zero depth for points at infinity. While some
of these properties have yet to be developed for general graph
structures, in the appendix we prove the asymptotic depth prop-
erty for points at infinity for vertices and paths.

4. Path Boxplot Visualization

Here we develop a visualization for the proposed analysis in
a manner similar to what has been proposed for functions,
contours, and curves (Sun and Genton 2012; Genton et al. 2014;
Whitaker et al. 2013; Mirzargar et al. 2014). The proposed visu-
alization approach is motivated by the classical whisker plot or
boxplot, and relays a display of the median, 50% band, 100%
band, and outliers for graph-based path ensembles. Figure 3(a)
shows a synthetically generated path ensemble with each path
drawn using a random color. Figure 3(c) and 3(d) shows two
variations of our proposed visualization described next.

We render the visualizations in a way that it describes rank
statistics of the distribution or ensemble. We first establish the
placement of vertices and edges either intrinsically or via a
layout algorithm (Gibson et al. 2013). Next, we use color and
width/thickness on edges and vertices to represent their rank.
The paths in the 100% band are drawn thickest in light blue. The
paths in the 50%band are drawnusing a thinner dark blue stroke
on top of the thicker light blue band. This drawing of the thinner
dark blue stroke over the thicker light blue stroke is done to indi-
cate that the path in the 50% band is contained within the 100%
band as well. Continuing this strategy, themedian path is drawn
using a thin yellow stroke drawn over a thicker dark blue stroke,
which in turn, is drawn over the thickest light blue stroke. To
signify that the outlier paths lie outside even the 100% envelope,
they are drawn using only a thin red stroke. Figure 3(c) shows a
version of the path boxplot that uses the described encoding for
paths. A variation of this approach as seen in Figure 3(d) where
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248 M. RAJ ET AL.

Figure . Synthetic example . (a) A path ensemble with each path rendered with a random color. (b) Path boxplot using rank statistics based on sum of Fréchet distances.
(c) Path boxplot based on path band depth (visualizationwithout vertex encoding). (d) Path boxplot based on path band depth (visualizationwith vertex encoding).

the vertices are also encoded, based on their position, in addition
to the edges in the graph. Vertices that are not part of the convex
hull formed by any set of corresponding vertices between paths
are drawn as small gray circles. Vertices that are in the convex
hulls formed by paths in the 50% band are drawn using a light
blue circle. Analogous to the encoding for the paths, vertices in
the convex hulls formed by paths in the 50% band are drawn
using a deep blue circle contained within a larger light blue cir-
cle while vertices lying on the median path are marked with an
additional yellow circle drawn within the deep blue circle which
is itself contained within a light blue circle.

The sections that follow demonstrate applications of the pro-
posedmethod on synthetic examples and datasets from applica-
tions in transportation and computer networks.We use the visu-
alization approachwith vertex encoding (as seen in Figure 3(d))
for all further path boxplot visualizations based on path band
depth in this article except when vertices on the graph are not
rendered (see Figure 5(b)).

5. Results

Webegin by showing results for two synthetically generated path
ensembles on graph. For these ensembles, we show path box-
plot visualizations generated using rank statistics obtained by
path band depth analysis, as well as, the Fréchet distance metric
analysis (Eiter andMannila 1994). For these path ensembles, the
results were identical on replacing Fréchet metric by Hausdorff
metric, and therefore we show only one of thesemethods.When
using a distance metric, we rank each path using the sum of its
distances from all the other paths in the ensemble. Hence, the
path that minimizes this sum is identified as the median. Note
that this is different from path band depth where the median
path has maximum depth. The underlying graph in both our
examples is associated with a regular, diagonal grid (constructed
from including diagonals in a conventional, structured quadri-
lateral grid).

For the first of these examples (see Figure 3), we generate
an ensemble of 20 paths by sampling with replacement from

a set of straight paths (all vertices in path have same ordinate)
spanning the horizontal extent of the grid. The ordinate of each
path comes from a random variable associated with a normal
distribution centered at central ordinate of the grid. We com-
plete the ensemble by adding a simulated outlier in the form of a
zigzag path (see Figure 3(a)). In Figure 3(b), we see the path box-
plot visualization of Fréchet distance-based depth. Figure 3(c)
and 3(d) shows two versions of path boxplot of our path band
depth analysis. In this simple example, we see that the result
from path band depth analysis is very similar to distancemetric-
based analysis with both approaches identifying the zigzag and
peripheral paths as outliers.

We now present an example where distance metric-based
methods fail to detect the general structure (median) and
anomalous path (outlier) in an ensemble. Further, we see that
path band depth analysis is able to correctly make this deter-
mination by capturing the nonlocal correlations in the path
ensemble. Here, we produce an ensemble of 20 straight paths
spanning the grid’s horizontal extent, starting and ending at
vertices with same ordinate (see Figure 4). In this case, how-
ever, each path is required to undergo flips when traversing
the flip regions as seen in Figure 4(a). The vertex within each
zone where the flip occurs is chosen uniformly from among
the vertices in each zone. We add a simulated outlier to this
ensemble in the form of a path with no flips (Figure 4(a)). In
this case, we see that the distance-based metrics (Figure 4(b))
identify the simulated outlier as the median (most representa-
tive) while the path band depth method (Figure 4(c)) selects
one of the randomly sampled paths as the median. The simu-
lated outlier is closest to other paths with regard to the distance
metrics while identified as an outlier by the path band depth
analysis.

5.1. Transportation Networks

We used publicly available road data from OpenStreetMaps
(OSM) (Haklay andWeber 2008) for a randomly chosen region
in Los Angeles, California. Figure 5(a) shows a part of the road
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Figure . Synthetic example . (a) A path ensemble with each path renderedwith a random color. (b) Path boxplot using order statistics based on sum of Fréchet distances.
(c) Path boxplot based on path band depth.

graph overlaid on a map. We used expected travel time between
the two adjacent vertices, obtained by querying the open source
routing engine Gosmore, as the weight of each edge. Travel time
along a short road segments can bemodeled using a normal dis-
tribution (He et al. 2002). We obtained an ensemble of 20 paths
between two random vertices by repeatedly finding the lowest

cost path on graph whose edge weights were picked, after each
iteration, from a normal distribution centered at the expected
travel time for that edge.

For visualizing the paths, we use the geographical coordi-
nates of the vertices on the road graph for layout. A map, also
based on OSM data, is provided in the background for context

Figure . Road network. (a) A section of the road graph overlaid on a map representing actual spatial embedding of vertices and edges. (b) Path boxplot for an ensemble
of paths on a road network.
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Figure . Outlier paths on AS graph: (a) Class  outlier: No unique vertices/edges in the outlier path. (b) Class  outlier: One unique edge, no unique vertices in the outlier
path. (c) Class  outlier: Outlier appears to be one hop bypassing amore normal route. (d) Class  outlier: Outlier is two hops around amore normal route. (e) Class  outlier:
Outlier takes several hops around the usual path.

in accordance to the common practice for viewing geographi-
cal routes (see Figure 5(a) and 5(b)). To have the overlaid paths
align with underlying roads on the map and also be feasible
with regard to traffic restrictions, we used the Gosmore rout-
ing service to obtain the geographic coordinates of the spatial
path drawn between every pair of adjacent vertices along each
paths in our ensemble. This is necessary for drawing road seg-
ments that are curved or where the direct connection between
two vertices is illegal according to local traffic rules.

A path boxplot of a path ensemble on a road graph is shown
in Figure 5(b). The most representative path or the median path
seen here can be useful when the requirement is to select a par-
ticular path from a collection of paths on a road graph. For
instance, a median path would be a good choice of a path that
affords quick access to a number of alternate paths, which would
be useful in situations involving high traffic conditions or block-
ages. The path boxplot would also find utility for planning bicy-
cle corridors (Evans et al. 2012, 2013).

5.2. Computer Networks (Autonomous Systems)

We used a subset of the AS graph as well as path ensembles of
packets traveling between AS’s on that graph from a set of path
snapshots seen from the Oregon Routeviews server. For clarity,
we filtered out vertices in the graph that did not lie on a geodesic
between any pair of vertices in the path ensemble. Additionally
in the visualization we only include a single geodesic between
all pairs of vertices in the ensemble. For graph layout in 2D, we
modify the force directed model in Fruchterman and Reingold
(1991) by including an extra repulsion between the vertices at
the two endpoints, so that they are placed at nearly opposite
ends of the layout. Also, the charge/repulsion on each vertex
is made proportional to its degree for avoiding congestion near
high degree vertices.

We looked at several destinations that had significant varia-
tions in their paths throughout the year. Visualizations of a few
of these ensembles can be seen in Figure 6. Looking at a selec-
tion of these ensembles, there are some special cases identified
as outliers. Figure 6(a) shows an outlier where the outlying path
is of the same cardinality as the median path and does not con-
tain any unique vertices or edges causing it to be undetectable
by common heuristic methods used to analyze network traf-
fic. Other cases include Figure 6(b)–6(e) where the outlier path
bypasses other paths through unique edges or vertices. Cases
where they depart near one of the endpoints, such as 6(e), may
be relatively straightforward for the operators of those edge net-
works to detect, as their own routers will directly see the change
in where traffic enters or exits their networks. Cases such as
Figure 6(c), however, exhibit changes in networks that may not
be directly visible from the endpoints, and yet affect the overall
behavior of traffic to/from these endpoints. These are cases that
can be particularly difficult to discover and diagnose; a path box-
plot can aid operators in assessing such cases.

6. Conclusion and FutureWork

Assigning centrality based ordering for an ensemble of paths is
useful in many applications. Although robust band depth-based
methods for calculating order statistics have been recently intro-
duced for various kinds of ensembles on a continuous domain,
they cannot be employed in cases where the ensemble mem-
bers are described on a graph. We identify the challenges in
extending this approach to paths on a graph and present a solu-
tion in the form of a novel notion of depth denoted as path
band depth. A visualization scheme based on this new notion of
depth called path boxplot is also introduced. This article demon-
strates its utility to help understand the overall structure of the
ensemble using synthetic data as well as data from two real
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application areas, path ensembles on autonomous system (AS)
graphs and on road graphs.

While being a robust method for generating order statistics
for path ensembles, the proposed analysis is computationally
intensive due to its combinatorial nature. The topology of the
underlying graph as well as the density of its edges also effect
the computation time by a constant factor. A practical approach
to deal with larger ensembles (with large number of paths) is
to trade running time for an approximate solution by randomly
selecting a subset from the set of all possible bands as suggested
in López-Pintado and Romo (2009). In the case of ensembles
with long paths, skipping vertices in the description of the paths
may also provide an acceptable compromise between accuracy
and performance. Developing a heuristic for skipping vertices in
large ensembles of long paths to achieve an optimum trade-off
between running time of analysis and the quality of the solution
would be an interesting avenue for future work. It would also be
interesting to explore the application of path boxplot in other
areas such as in mobile ad hoc networks, which can be modeled
as a graph with dynamic topology (Molnár et al. 2011) and in
molecular dynamics, to identify a most representative path as
an alternative to computing the mean statistics for the ensemble
members.

Appendix

Let graph G = (V,E,W ) be an infinite graph (i.e., |E| and |V | are infi-
nite), andW are positive edge weights, as in Section 3. For {m, n} ∈ V , we
say that v ∈ V is geodominated by {m, n} if v lies on some m − n geodesic
(Pelayo 2014). If S ⊂ V , we say geodesic closure I[S] is the union of all
vertices geodominated by any pair of vertices in S . We recursively define
Ik+1[S] = I[Ik[S]] with I0[S] = S . The geodesic iteration number of S ,
denoted gin(S ), is the smallest positive integer n such that In[S] = In+1[S]
(Cáceres et al. 2005). The geodesic closure or convex hull of S is denoted
H[S].We rely on two other definitions that build on geodesic iterations.We
define the diameter of a set of vertices S ⊂ V , as D(S ) = max{dg(u, v ) :
u, v ∈ S}.

For the following theorems, we consider graphs with bounded geodesic
iterations. Thus, we say that a graph has bounded geodesic iteration number
for sets of size j (denoted B-gin- j) if and only if there exists k such that
maxV j∈S j {gin(V j )} ≤ k, whereV j = {S ⊂ V : |S| = j} andS j denotes the
set of all subsets ofV of size j.

The asymptotic properties of depth on graphs will depend on the nature
of the probability distributions on vertices and paths. We say that ProbV (v )

is a transient probability distribution over the vertices, v ∈ V , if and only
if there exists a vertex vc ∈ V such that Prob(v ) → 0 as dg(v, vc) → ∞.
Likewise, for paths, let P be the set of all possible paths in G. ProbP (p) is a
transient distribution over paths, if and only if there exists a finite path pc ∈
P such that ProbP (p) → 0 as dH(p, pc) → ∞ (where dH is the network
Hausdorff distance) and ProbP (p) → 0 as |p| → 0.

Lemma A.1. D(Ik[V j]) ≤ 2k × D(V j ) for all k ≥ 0.

Proof. We prove this by induction on geodesic iterations. The base case
k = 0 is trivial. AssumeD(Ik[V j]) = 2k × D(V j ) for some k ≥ 0. Now con-
sider a vertex a ∈ {Ik+1[V j] − Ik[V j]}. It must lie on a geodesic between two
points in Ik[V j], and thus its distance to the nearest point in Ik[V j] is at
most D(Ik[V j])/2, and its distance to any point in Ik[V j] is bounded by
3D(Ik[V j])/2. Thus, dg(a, b) ≤ 2 × D(Ik[V j]) ∀ b ∈ Ik+1[V j], and hence
we have D(Ik+1[V j]) ≤ 2 × D(Ik[V j]), which completes the proof. �

Theorem A.1. For an infinite B-gin − j graph G and a transient distribu-
tion ProbV over its vertices, the graph-simplex band depth of a vertex v
converges to zero as its distance from vc tends to infinity.

Proof. The proof is by contraction. For a vertex v let there exist ε > 0
such that Prob[v ∈ H(V j )] ≥ ε as dg(v, vc) → ∞. Because of the nonzero
probability, there exists a set V j ∈ S j and γ ∈ R

+ such that dg(v ′, vc) <

γ ∀ v ′ ∈ V j . This implies thatD(V j ∪ vc) < 2γ . This and the B-gin- j prop-
erty bounds the closure of V j ∪ vc. Thus, D(H[V j ∪ vc]) < 2M+1γ where
M is the gin bound. We can therefore enclose the convex closure of V j
in a finite-sized ball around vc. Therefore, v ∈ H(V j ) implies dg(v, vc) <

2M+1γ . This contradicts dg(v, vc) → ∞. �
Lemma A.2. For any path p ∈ P and index set I , let l =
argmaxi∈I dg(p(i), pc(i)). Then, dH(p, pc) ≤ dg(p(l), pc(l)) ≤
dH(p, pc) + A where A ∈ R

+.

Proof. From the definition of Hausdorff distance, we have dH(p, pc) ≤
dg(p(l), pc(l)). Now, let m and n be indices such that dg(p(m), pc(n)) =
dH(p, pc). From triangle inequality, we see dg(p(l), pc(l)) ≤ dH(p, pc) +
dg(p(l), p(m)) + dg(pc(l), pc(n)). As path lengths are bounded in the
transient distribution P , we have that dg(p(l), p(m)) and dg(pc(l), pc(n))

are bounded. Hence, dg(pi(l), pc(l)) ≤ dH(p, pc) + A where A ∈ R
+. �

Theorem A.2. For a B-gin- j graph, G and a transient distribution ProbP of
paths in G, the path band depth of an arbitrary path p converges to zero as
dH(p, pc) → ∞.

Proof. The proof is by contradiction. For a path p let there exist
ε > 0 such that Prob(p ∈ B(P j )) ≥ ε as dH(p, pc) → ∞. Because
Prob(p ∈ B(P j )) ≥ ε, there exists K ∈ R

+ and P j such that
dH(p′, pc) ≤ K ∀ p′ ∈ P j . For an index set (i.e., correspondence), let
l be the index of the vertex p(l) such that l = argmaxi dg(p(i), pc(i)).
Now we consider the vertex set P j(l) = {p1(l), . . . , p j(l)}. From Lemma
A.2 and because the Hausdorff distance of this set of paths to pc is
bounded, the distance between corresponding vertices, dg(pi(l), pc(l))
where pi ∈ P j , is bounded by K + A where A ∈ R

+. Let ‖pc‖ = L,
and we have D(P j(l)) ≤ 2(K + A) + L. From Lemma A.1 and
the B-gin- j property, we have D(H(P j(l))) ≤ 2M(2(K + A) + L)

where M is the gin bound. Therefore, we have dg(p(l), pc(l)) ≤
2M(2(K + A) + L). From Lemma A.2, this means that dH(p, pc) ≤
2M(2(K + A) + L), which contracts the assumption that dH(p, pc) is
unbounded. �

Supplementary Materials

Python code for path boxplot:All code and datasets are included in the Path-
Boxplot.zip file. The root folder contains scripts to perform analysis and
generate visualizations for synthetic, AS network, and road network for all
examples in the manuscript. Instructions for running the experiments are
included in readme.txt located in the root folder.
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