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Abstract

Multidimensional data sets are common in many domains, and dimensionality reduction methods that determine a lower di-
mensional embedding are widely used for visualizing such data sets. This paper presents a novel method to project data onto a
lower dimensional space by taking into account the order statistics of the individual data points, which are quantified by their
depth or centrality in the overall set. Thus, in addition to conveying relative distances in the data, the proposed method also
preserves the order statistics, which are often lost or misrepresented by existing visualization methods. The proposed method
entails a modification of the optimization objective of conventional multidimensional scaling (MDS) by introducing a term that
penalizes discrepancies between centrality structures in the original space and the embedding. We also introduce two strategies
for visualizing lower dimensional embeddings of multidimensional data that takes advantage of the coherent representation of
centrality provided by the proposed projection method. We demonstrate the effectiveness of our visualization with comparisons
on different kinds of multidimensional data, including categorical and multimodal, from a variety of domains such as botany
and health care.

CCS Concepts
•Human-centered computing → Information visualization; Visual analytics; •Mathematics of computing → Mathematical
optimization;

1. Introduction

Multidimentional data appear frequently in a wide range of do-
mains and applications. For example, data from domains such as
healthcare, engineering, and social sciences often contain a large
number of dimensions [Lic13]. The various dimensions in such
data can contain either numerical or categorical values. Multidi-
mensional data can also have complex structures, for example, the
data can be multimodal with several clusters or lie on a lower di-
mensional manifold in a high dimensional space. A wide range of
visualization methods have been developed to help visualize and
understand such complex, high-dimensional data sets [LMW∗17].

Among the various methods for analyzing high dimensional
data, dimensionality reduction methods that project data onto lower
dimensional spaces are often useful for getting a quick and gen-
eral overview of the data. These include various linear and nonlin-
ear methods such as principal component analysis (PCA), multi-
dimensional scaling (MDS), and t-distributed stochastic neighbor
embedding (t-SNE). The objective of these methods is often to
convey the structure of data by preserving approximate pairwise
distances from the original or intrinsic space, in the lower dimen-
sional embedding space. Methods such as PCA and MDS can be
formulated to work with only inner product information, which is
useful for visualizing data in kernel spaces, which may lack an
explicit vector representation [SSM97]. Dimensionality reduction

techniques are also used in conjunction with other visualization
methods [RRT99, MLL12].

Despite usefulness of dimensionality reduction methods for vi-
sualizing multidimensional data, there are a few critical limita-
tions associated with those methods. The PCA and related subspace
based approaches may not be suitable if the data is not well approx-
imated by a linear subspace. While MDS and nonlinear methods
such as t-SNE are able to highlight geometric relationships, even in
the presence of nonlinear structure, they are susceptible to misrep-
resenting the statistical structure in the data. For example, points
that are rare and on the outer periphery of a distribution in a high
dimensional space may be projected close to a more typical point
near the center of the distribution. Such instances are common, and
unsurprising if we consider that the objective of those methods is
typically to preserve the relative distances between points with no
mechanism to correctly convey how central or typical points are in
a data set or distribution. While the focus on preserving relative dis-
tances to reveal high level structure can be useful, doing so at the
expense of centrality information can hinder a true understanding
of the data set as a whole, and be particularly detrimental for the
purpose of analyzing outliers [Wil17].

In this paper, we propose a novel method to project multidi-
mensional data onto a lower dimensional space while (approxi-
mately) preserving centrality structure as well as relative distances
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in the data. The focus of this work is different from prior work
in robust multidimensional scaling that aim to mitigate the unde-
sirable effects resulting from inconsistencies in data (pairwise dis-
tances in the original space) [SL89, FG12]. In contrast, the pro-
posed method is relevant even when there are no inconsistencies
in the data. The proposed method does share ideology with a fam-
ily of methods from the domain of graph drawing, where the goal
is to determine node positions in a drawing that simultaneously
convey graph-theoretic, internode distances (distances along edges)
as well as node centrality or importance based on complementary,
graph-theoretical measures [BKW03,BP09,BG14,RW17]. The in-
ternode distances in the drawing approximate the graph-theoretical
distances under the constraint that the distance of each nodes from
the drawing’s geometric center be proportional to its graph central-
ity value.

In this work, we aim to preserve order statistics of the data in
the original space by ensuring that less central or outlying points
do not end up appearing to be more central in low dimensional em-
beddings, or vice versa. We also want to preserve relative pairwise
distances in the data as much as possible. An overview of the pro-
posed projection method for satisfying the above objectives is as
follows. We first quantify centrality of each member in the original
space by employing data depth methods (see Sec 2.1). Next, we de-
sign a penalty term to be added to the MDS optimization objective
which penalizes low dimensional embeddings, where along any ray
traveling away from the position of the most central member, less
central points are situated further from the center than more central
points. Although we demonstrate the proposed method with help of
the MDS objective, the general approach can be used to similar ef-
fect with any other dimensionality reduction method that involves
iterative optimization.

The goal of visualizations, in general, is to highlight features of
interest in the data. These feature often include summary statistics
such as most central or typical member (also known as the me-
dian), least central or outlier members, as well as the shape and
the spread of the bulk of data. In case of 1-dimensional (1D) and
2-dimensional (2D) data, visualizations such as the Tukey box-
plot [Tuk75] and the bivariate bagplot [RRT99] convey a visual
summary of the data by displaying summary statistics. In this pa-
per, we exploit the coherent centrality structure in the embedding
space afforded by the proposed projection method to develop vi-
sualization strategies, along the lines of the bivariate bagplot, for
multidimensional data (i.e. where d > 2).

The main contributions of this paper are:

• A novel method for projecting multidimensional data using order
statistics called order aware projection (OAP).
• Two visualization strategies based on the proposed projection

method, namely, field overlay plot and projection bagplot.
• An interactive prototype tool to explore data.
• Demonstration of the effectiveness of the method with four real

data sets.

The rest of the paper is organized as follows. Sec 2 provides an
overview of the technical background related to the proposed meth-
ods. Sec 3 presents a description of the proposed dimensionality
reduction method and visualization strategy. We demonstrate pro-

(a) (b)

Figure 1: (a) Bivariate bagplot and (b) high density region (HDR)
boxplot visualizations of El Nino dataset (12-dimensional temper-
ature data for each year from 1951 to 2007) generated using the R
Rainbow package [SHS16].

posed methods using real data in Sec 4, which is followed by a
general discussion in Sec 5.

2. Background

Here we provide an overview of necessary technical background
and related work.

2.1. Order Statistics and Data Depth

Order statistics for a data set are members from the data set placed
in an ascending order based on some criteria. For our purpose, we
are interested in center-outward order statistics that help quantify
how central or outlying a member is with respect to a data set. In the
case of 1D numeric data, sorting numbers based on distance from
the median provides an easy way to obtain order statistics. When
the data is multidimensional, a family of methods from descrip-
tive statistics known as data depth can be used to quantify center-
outwardness. Data depth methods exhibit several useful properties,
which make it an attractive basis for analyzing data. These proper-
ties include robustness, maximum at center, monotonicity, and zero
at infinity [ZS00].

Data depth methods have been proposed for tackling several
types of multidimensional and multivariate data, for example, high-
dimensional points [Tuk75], functions [LPR09], sets [WMK13],
multivariate curves [MWK14], and paths on a graph [RMR∗17].
In this paper, we use different formulations of data depth based
on the type of data. We use halfspace depth for numerical multi-
dimensional data with relatively few dimensions (Sec 4.2). We use
functional depth for dealing with higher dimensional data because
it can be efficiently computed for such data (Sec 4.1). Finally, we
use set depth for categorical data sets (Secs 4.3 and 4.4).

A brief overview of halfspace depth, functional depth, and set
depth follows. Halfspace depth of any point x ∈ Rd with respect
to a set of points X ∈ Rd is defined as the smallest number of data
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points from X that can be contained in a closed half space also
containing x [Tuk75, DM16]. This can be stated as:

dhalfspace(x|X) = min
a∈Rd\0

|
{

p ∈ X : 〈a,p〉 ≥ 〈a,x〉
}
| (1)

Functional depth of any function g(t) with respect to a set of
functions F = { fi(t) : 1≤ i≤ n}, fi :D→R, where D andR are
intervals in R, is given by the probability of g(t) being contained in
a functional band, where functional band is the region between the
min/max envelope formed by a set of j randomly chosen functions
{ f1(t), . . . , f j(t)} ∈ F [LPR09]. This can be stated as:

dfunctional (g(t)|F) = Prob
(
g(t)⊂ fB

[
{ f1(t), · · · , f j(t)}

])
, (2)

where fB[ · ] denotes the functional band. A function g(t) is con-
tained in the functional band formed by { f1(t), . . . , f j(t)} if it sat-
isfies the following:

g(t)⊂ fB
[
{ f1(t), · · · , f j(t)}

]
iff

min
(

f1(t), · · · , f j(t)
)
≤ g(t)≤max

(
f1(t), · · · , f j(t)

)
∀t.
(3)

Set depth of any set s with respect to a set of sets S = {si : 1 ≤
i≤ n} is given by the probability of s being contained in a set band,
where set band is the set bounded by the union and intersection of
j randomly chosen sets { s1, . . . ,s j} ∈ S [WMK13]. This can be
stated as:

dset (s|S) = Prob
(
s⊂ sB

[
{s1, . . . ,s j}

])
, (4)

where sB[ · ] denotes the set band. A set s is contained in the set
band formed by {s1, . . . ,s j} if it satisfies the following:

s⊂ sB
[
{s1, . . . ,s j}] iff

j⋃
k=1

sk ⊂ s⊂
j⋂

k=1

sk.

Function depth and set depth are stable with respect to the choice
of j where 2≤ j ≤ n [LPR09, WMK13].

2.2. Data Depth based Visualizations

A common area of application for data depth methods is ensem-
ble visualization where the order statistics obtained using data
depth are used to design summary visualizations for ensembles
of various kinds of data. The perhaps most well known example
is the Tukey boxplot [Tuk75]. Other depth based visualizations
have been proposed for bivariate data [RRT99], high-dimensional
data [Hyn96], ensembles of functions [SG11], surfaces [GJP∗14],
sets or isocontours [WMK13], curves [MWK14, LPSLG14], and
paths on graphs [RMR∗17]. Our work relates closely to the visu-
alizations for multidimensional data, particularly the bivariate bag-
plot [RRT99] and the high density region (HDR) boxplot [HS10]
(see Fig 1).

For 2D data, the bivariate bagplot (Fig 1a) is a visualization tech-
nique that highlights the median, spread, skewness, and outliers in

the data. The first step for drawing a bagplot is to determine order
statistics using half space depth. This is followed by drawing the in-
ner and outer convex polygons or bands. The inner band highlights
the most central half of the data as determined by the order statis-
tics while the outer band is constructed by inflating the inner band
by a constant factor α. Points outside the outer band are consid-
ered to be outliers. The HDR boxplot uses bivariate kernel density
estimation to identify regions of interest. The bivariate bagplot as
well as the HDR boxplot use dimensionality reduction methods,
typically PCA, for dealing with higher dimensional data (d > 2) by
projecting the data to 2D as a preprocessing step [Hyn96, HS10].

2.3. Multidimensional Scaling (MDS)

Since the proposed projection method uses the MDS objective
function, we give a brief overview of MDS and its usage in dimen-
sionality reduction. MDS refers to a popular class of techniques
for visualizing similarities between members of a data set. Given
a collection of high-dimensional points Y = [y1, . . . ,yn]

T ∈ Rn×d ,
the goal of MDS is to find a low-dimensional embedding
X = [x1, . . . ,xn]

T ∈ Rn×k, where k < d, such that the discrepancy
between the pairwise distances in the original space Rd and corre-
sponding distances in the embedding space Rk is minimal.

While there are several variants of MDS, in this paper we use a
variant known as metric MDS with distance scaling; without loss
of generality. Distance scaling makes this variant of MDS nonlinear
with more emphasis on conveying smaller distances. The objective
function of metric MDS is also known as stress, and after incorpo-
rating distance scaling, it can be written as follows [BG05,McG66]:

σ(X) = ∑
i< j

wi j
(
δi j−d(xi,x j)

)2
, (5)

where δi j = ||yi − y j||2, d(xi,x j) = ||xi − x j||2, and wi j = δ
−2
i j .

The gradient of the above MDS objective can be written as fol-
lows [BG05]:

∇σ(X) = 2V X−B(X)X (6)

where matrices V = (vi j) and B = (bi j), with 1 ≤ i, j ≤ n, can be
represented as:

vi j =

{
−wi j for i 6= j

∑
n
j=1, j 6=i wi j for i = j

bii =−
n

∑
j=1, j 6=i

bi j

bi j =

{
− wi jδi j

d(xi,x j)
for i 6= j and d(xi,x j) 6= 0

0 for i 6= j and d(xi,x j) = 0

2.4. Monotone Regression along One Variable for
Multivariate Data

The proposed projection method also involves computing a con-
tinuous and smooth, radially decreasing approximation of depth of
members in a 2D embedding. We call this approximation the mono-
tonic field (Fig 2c). Note that data depth values are computed for
points in the original space and not after they are projected onto
the embedding space. To construct a monotonic depth field from a
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sparse set of depth values arranged in a 2D embedding plane, we
start by computing a smooth interpolated field (Fig 2b) of depth
values using the thin plate spline technique [Boo89]. In what fol-
lows, we briefly describe our approach for computing the mono-
tonic field by radially monotonizing the interpolation field. This
approach is adapted from a technique for performing monotone re-
gression for multivariate data [DS06].

The process of computing radially monotonic approximations
of a smooth 2D field depends on a method to find monotonic
approximations of univariate data. Given a smooth 1D function
m(t) : [0,1]→ R, the following two steps provide a monotonic ap-
proximation, m̂A(t), that is smooth and first-order asymptotically
equivalent to m(t) [DNP∗06]:

• Step 1 (monotonization): Sample input function at regular inter-
vals, compute a density estimate of the samples, and then com-
pute a cdf of the density estimate to arrive at the inverse of the
monotonic approximation.

m̂−1
A (z) =

1
Nω

N

∑
i=1

∫ ∞
z

K

(
m
( i

N
)
−u

ω

)
du (7)

where N controls the sampling resolution, and K is a smooth,
symmetric kernel with bandwidth ω.
• Step 2 (inversion): Calculate the inverse of m̂−1

A , which is the
desired monotonically decreasing approximation of the 1D func-
tion m(t).

For computing a radially monotonic approximation of the inter-
polated field, we proceed by resampling the field onto a polar grid
centered at the median (deepest member as per data depth com-
puted in the original space). We then treat values on the field along
each of the evenly spaced angular coordinates as 1D functions,
which can then be monotonized using the procedure described
above. On monotonizing those 1D functions along each direction,
we arrive at the monotonic field, which we then resample back to
Cartesian coordinates. The resolution of the polar grid, both radial
and angular, determine the quality (smoothness) of monotonic field
(we use 360 radial divisions for results in this paper). The smooth-
ness of the interpolation field is preserved through this process,
meaning that field values along adjacent directions vary smoothly
and remain coherent, due to the properties of the monotonization
process (except at the origin due to the intermediate polar coordi-
nate representation) [DS06].

3. Method

Here we describe the proposed projection method, which preserves
the centrality structures using order statistics (Sec 3.1), and visual-
ization strategies, which use the resultant embedding (Sec 3.2).

3.1. Projecting Multidimensional Data using Order Statistics
(Order Aware Projection)

The high-level goal of our projection method is to preserve both the
relative distances between individual members as well as the order
statistics from the original multidimensional space when comput-
ing a lower dimensional embedding. To achieve this, we design an
objective function which comprises of two terms. The first term

Algorithm 1: Order Aware Projection (OAP)

Input: Y = [y1, . . . ,yn]
T ∈ Rn×d , maximum number of

iterations imax ∈ N, depth field lag `, step size τ, depth
weight wp

Output: Positions Ximax+1 = [x1, . . . ,xn]
T ∈ Rn×k where k < d

X0← compute initial embedding using MDS ; /* (2.3)

*/
h ∈ Rn×1← compute order statistics for {y1, . . . ,yn} ∈ Rd

for i = 1, . . . , imax do
if i mod `= 1 then

X ′← Xi
MX′,h(Xi)← compute monotonic field ; /* (2.4)

*/
end
Xi+1←

Xi−τ

(
∇σ(Xi)+wp×2

(
MX′,h(Xi)−h

)
�∇MX′,h(Xi)

)
;

/* perform gradient update (3.1) */

end

is identical to the MDS stress (Sec 2.3), which penalizes discord
in pairwise distances between intrinsic space and the embedding.
The second term levies an energy penalty for discord in the center-
outward order statistics. Since the order statistics are determined
using data depth, we call this term the depth penalty.

The data depth values computed in the original space (Sec 2.1)
and the monotonic field computed in the embedding space (Sec 2.4)
are used to quantify the discord in centrality structure between the
original and embedding spaces. The isocontours of the monotonic
field mimic the monotonic, center-outward decrease of depth values
in the original space. The depth penalty at each point is proportional
to the difference between its depth value in the original space and
the depth values of the monotonic field sampled at the location of its
projection in the embedding space, and can be expressed as follows:

p(X)∝
(
MX ,h(X)−h

)2 (8)

where X = [x1, . . . ,xn]
T ∈ Rn×k, h ∈ Rn×1 contains depth values

associated with X computed in the original space Rd , where k < d,
and MX ,h(X) ∈ Rn×1 denotes values of the 2D monotonic field
at positions in X . The mention of X and h in the subscript indi-
cates their use in the construction of the monotonic field, while X
in parenthesis indicates positions where field values are sampled. If
the interpolated field (Sec 2.4) is also itself radially monotonic, the
value of depth penalty term approaches zero. The complete objec-
tive function, which includes both MDS stress and depth penalty,
can be stated as follows:

γ
(
X
)
= σ(X)︸ ︷︷ ︸

MDS stress

+ wp p(X) (9)

where wp is a constant of proportionality controlling the relative
importance of the depth penalty with respect to MDS stress. The
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(a) (b) (c)

(d) (e)

Figure 2: Various stages during the proposed methods. a) Points from an anisotropic, 3D normal distribution projected on a 2D plane using
MDS. Circle sizes indicate half space depth of points in the original 3D space. b) The initial interpolated field in the background of the
MDS projection. c) The initial monotonic field in background obtained from initial interpolated field. d) Field overlay plot using order aware
projection (OAP) after optimization is complete. The final monotonic field shown in the background. e) Projection bagplot visualization.
Median is shown in yellow. Deep blue indicates 50 percent band and light blue indicates 100 percent band.

gradient of the above objective can be derived as:

∇γ
(
X
)
=∇σ(X)+wp×2

(
MX ,h(X)−h

)
�∇MX ,h(X)︸ ︷︷ ︸

∇p(X)

(10)

where � denotes element-wise product. We perform optimization
of the above objective using gradient descent until X converges or
the maximum number of allowed iterations is reached. The pro-
posed projection method is summarized in Algorithm 1.

Optimization of the above objective requires a few considera-
tions in practice. First, computing the gradient of the monotonic
field M at positions X is nontrivial due to dependence of M it-
self on X. We deal with this issue by letting the field lag, which
means to recompute M only after a fixed number of iterations, `,
have passed since the previous update and treat it as a constant
during all intervening iterations (see Fig 3). If field M is help con-
stant (` =∞), convergence at a local minima can be guaranteed
due to properties of gradient descent. On allowing field to lag suit-

ably (1 ≤ ` <∞, see Sec 5), in practice we observe convergence
to a lower energy state; although a theoretical guarantee remains
a topic for future work. This approach is also used for minimiz-
ing similar energies for computing graph layouts [RW17]. Second,
for stability with regard to the median, the proposed method relies
on known robustness of data depth methods in situations of data
contamination [Tuk75, SG11, WMK13]. In cases where there are
multiple members identified as a median in the original space, we
choose the member with the highest depth value among them in the
embedding space. This helps reduce overall energy if different me-
dians are projected far apart, as is often observed with categorical
data (Secs 4.3 and 4.4).

In the case of multimodal data where class membership infor-
mation is known in advance, we construct a separate monotonic
field for each class centered at the median of that class, which
leads to separate, exclusive depth penalty terms that apply only to
the members of the associated class (Secs 4.2 and 4.4). The MDS
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term is the same as in the general case (which assumes a unimodal
distribution) and considers pairwise distance relationships across
the entire data set. This approach preserves the centrality structure
within each class while allowing MDS forces to determine the rel-
ative placement of different classes.

3.2. Field Overlay and Projection Bagplot Visualizations

At the end of the optimization process, all members in the data
set are aligned with their corresponding isocontours (whose iso-
value matches member depth) on the underlying monotonic field.
The shape of the isocontours depends on the data and can of-
ten provide useful insights into the structure of the data in the
original space. Our first visualization strategy, called field over-
lay plot, is to present the order aware projection (OAP) embed-
ding overlaid on the associated monotonic field (Fig 2d). We show
the monotonic field as a color heatmap with isocontour lines for
10 equidistant values spanning the range of depth values. This ap-
proach helps with the interpretability of the OAP embedding by
highlighting the depth associated with each member as well as the
regions/directions of fast and slow depth changes.

Due to the radially, monotonically decreasing property of the
monotonic field, all isocontours divide the embedding space into
inner and outer regions, which exclusively contain members with
higher and and lower depth in the original space. We propose the
projection bagplot visualization (Fig 2e), which uses this arrange-
ment of members in the embedding space to convey the median,
inner, and outer bands analogous to those seen in the Tukey box-
plot [Tuk75]. The depth value of the isocontour corresponding to
the 50 percent band, h50%, is chosen to be the value of the member
at 50th percentile by ranking the members’ depth values. The 100
percent band is formed by inflating the 50 percent band by a con-
stant factor α. So we have h100% = hmedian−α× (hmedian−h50%)
where hmedian is the depth value of the median (highest depth value
by definition) and α = 1.5 typically [Tuk75, SG11]. We use higher
and lower color saturation for indicating band/members in the 50
percent and 100 percent bands, respectively. For multimodal data
with known class membership information, a separate set of 50
percent and 100 percent bands is computed and displayed for each
class (Figs 6 and 8).

The projection bagplot visualization shares some similarities
with both the bagplot and the HDR bagplot. The interpretation of
the bands in the proposed method is similar to that for the bagplot,
while the shape of bands is smooth and star shaped like in the HDR
bagplot. Despite the similarities, the proposed method is notabil-
ity different in its handling of multidimensional data projected to
lower dimensions due to the emphasis on maintaining the center-
outward order of members during the order aware projection pro-
cess. While glyph sizes or color can be modulated to convey order
statistics, the reliance of bagplot and HDR bagplot visualization on
existing dimensionality reduction techniques [HS10] can lead to
conflict between glyph size/color and location cues (e.g., members
appearing as outliers due to smaller glyphs also appearing closer to
the center). Furthermore, when displaying large data sets, available
display space may place an upper bound on the glyph sizes, thereby
restricting the usable range of glyph sizes.

Figure 3: The typical profile for MDS stress and depth penalty dur-
ing the optimization process. MDS stress increases slightly. The
depth penalty undergoes sharp drops periodically at iterations with
monotonic field updates.

4. Results

We now present some example visualizations of real data sets with
existing and proposed methods.

4.1. MNIST Data Set

The MNIST data set is popular in the machine learning commu-
nity and is comprised of thousands of samples of handwritten dig-
its [LC10]. The samples are formatted as 28× 28 pixel gray scale
images, resulting in each sample being comprised of 784 dimen-
sions. Fig 4 shows two visualizations of a random subset of 100
samples of digit 0, while Fig 5 shows digits 0, 1, 7 with 100 sam-
ples each. We consider each sample to be an instance of a 784-
dimensional function and use functional depth to compute order
statistics. In Fig 5, we use order statistics computed for each digit
separately. These order statistics are used to obtain an OAP embed-
ding, which is used to draw a field overlay plot (Sec 3.2). In Fig 5,
we use the proposed visualization strategy for multimodal data with
a separate monotonic field for each digit (Sec 3).

On comparing the MDS embedding Fig 4a and the proposed field
overlay plot Fig 4b, we can make a few interesting observations.
First, we notice that the underlying depth contours make it easy to
spot outliers in the field overlay plot. Since the contours adapt to the
data, we also notice different outlier characteristics, such as shar-
ing some similarity with other members (see member A) or being
more peculiar (see member B). We also notice that the proposed
projection (OAP) presents more clique-like structures, often with
similar members in a tighter cluster than in the MDS (see cliques
around region C). The formation of cliques can be understood by
considering that members in a relatively local region of the origi-
nal space would tend to have similar depth values and low pairwise
distances, and would be encouraged to be placed similarly in the
embedding by both depth and MDS energies. In Fig 5, we can ob-
serve the different monotonic fields for digits 0,1, and 7. The higher
overlap of digit 7 with other digits, particularly with digit 1, is im-
mediately clear. Furthermore, on tracing the outermost isocontours
of fields, we are immediately drawn towards outlying members that
have been placed far from other members, or share similarities with
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(a) (b)

Figure 4: MNIST data sample visualizations: (a) MDS, and (b) field overlay plot using order aware projection (OAP). Outliers and cliques
appear more prominent in the field overlay plot.

Figure 5: MNIST data sample visualization for multiple digits
(0, 1, and 7) with field overlay plot using order aware projection
(OAP). Monotonic fields corresponding to 0,1, and 7, are shown
using heatmaps and isocontour lines drawn in green, blue, and red,
respectively. Higher saturation of colors in the heatmaps indicate
higher value of monotonic field. Unusual members are apparent on
tracing outermost isocontours.

other digits. For example, see instances in marked by K and L, re-
spectively, in Fig 5.

4.2. Iris Flower Data Set

We obtained the well-known Iris data set from the UCI machine
learning repository [Lic13]. The data set contains flower sepal and
petal measurements from three related species of Iris flowers, and
includes 50 instances of each species with four numeric measure-
ments per instance. In Fig 6, we use the proposed visualization
strategy for multimodal data with a separate monotonic field for
each of the three species classes (Sec 3). The order statistics are
computed using half space depth for each class separately. The me-
dian of each class is colored dark gray, and the size of circular
glyphs encodes the depth of members with respect to their respec-
tive classes.

Fig 6a shows a bivariate bagplot [HS10] and Fig 6b shows the
proposed projection bagplot. In both figures, we immediately no-
tice a difference in the structure of the classes based on the over-
lap of the 50 and 100 percent bands. In the red (Setosa) class, we
observe a partial overlap as opposed to a full overlap in the blue
(Versicolor) and green (Virginica) classes. This indicates a more
even spread of members in the red class and more members at the
class boundaries for the blue and green classes. We also see that the
centrality structures within classes is preserved in the projection
bagplot; along all outward directions from the median, the depth
of the members falls monotonically. The preservation of centrality
structures prevents cases as in region D where members in the 100
percent band are projected to fall inside the 50 percent bands in the
embedding in the bivariate bagplot. Another interesting area is re-
gion E where two members are pushed out of the 100 percent band
despite being of similar depth as other nearby points. This hap-
pens due to the distance-preserving aspect of the proposed objec-
tive (Eqn 9) trying to convey differences among members that are
all on the boundary of the green class. Such cases as highlighted by
the projection bagplot are good instances for further exploration.
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(a) (b)

Figure 6: Iris flower data visualization: (a) bivariate bagplot using MDS, and (b) projection bagplot using order aware projection (OAP).
There are three species of flowers, each represented by a color, and each circle represents an individual flower. For the blue and green classes,
50 percent and 100 percent bands overlap due to a large proportion of members with identical, lowest value of depth. For the red class, only
the projection bagplot conveys band associations of the flowers correctly.

4.3. Unidentified Flying Object (UFO) Encounters Data Set

We now look at a data set related to UFO encounters that was
compiled by Winner from information available in the public do-
main [Win04]. The data set contains the following six attributes
(one numeric and five categorical): year of sighting, location,
presence/absence of physical effects, multimedia, extraterrestrial
contact, and involvement of abduction. To understand the typi-
cal/atypical characteristics of recored UFO encounters across the
years, we exclude the year information, and include only the cate-
gorical dimensions in our analysis. The distances between members
needed for the MDS term are obtained through the inner products
computed using the “k0” kernel for categorical data [BMV13]. We
compute order statistics for categorical data by using set band depth
(Sec 2.1) and treating each member as a set of its attribute values
from all dimensions [MWK17].

Fig 7 shows two visualizations for the UFO data set. An inter-
esting feature of this data set is the presence of several members
with the highest depth value that are placed relatively far from each
other. On inspection we find that they are all sightings in the USA,
which leads to the conclusion that a large number and variety of
UFO sightings are recorded in the USA. Some sightings at other
locations share many attributes of US sightings, still cannot be rep-
resentative of the data, as indicated by their low depth values, be-
cause of being at a different location (see region F). The projection
bagplot (Fig 7b) is able to convey this well by adjusting the shape
of the 50 percent band to exclude those points without significant
change in their positions, while the bivariate bagplot (Fig 7a) shows
a contradiction where members supposed to be in the 100 percent
band are seen within the 50 percent band. Another such contradic-
tion is seen in region G where outliers (shown in red) appear to be
inside the 100 percent band.

4.4. Breast Cancer Data Set

Fig 8 displays our final data set, which consists of a collection of
breast cancer patient attributes compiled at the University Medical
Center at Ljubljana and made available by the UCI machine learn-
ing repository [ZS88, Lic13]. This data set contains two patient
classes, recurrence and nonrecurrence, with 85 and 201 instances
per class, respectively. There are nine attributes per instance such
age range, tumor size, degree of malignancy, etc. Analogous to the
approach in Sec 4.3, we use a categorical kernel to compute dis-
tances in the original space [BMV13]. Since the data is bimodal
with known class membership information, we use the proposed
projection and visualization strategy for multimodal data with a
separate monotonic field for each class (Sec 3). The two medians
are drawn as larger circles in the color of their respective class.

This is a case of bimodal data where the classes are not clearly
separated. We notice from Fig 8 that the nonrecurrence class is
somewhat coherent while the recurrence class is more spread out
in a ring-like distribution. Such a distribution is a case that high-
lights the distinction between data depth and data density. While
depth would be high at the geometric center of such a distribution,
density would be low due to absence of members near the center.
Form this distribution, we can infer that there must be a large vari-
ation among the member attributes of the recurrence class, with
no good options among members to be considered typical or most
representative.

As expected, the projection bagplot visualization has members
in both classes arranged radially, in order of decreasing depth from
their respective class medians. The resulting structure makes it eas-
ier to spot several interesting outlying cliques. For example, in-
stances near region H correspond to relatively younger individuals
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(a) (b)

Figure 7: Unidentified flying object (UFO) encounters data visualizations: (a) bivariate bagplot using MDS, and (b) projection bagplot
using order aware projection (OAP). Each circle represents an encounter. Deep blue, light blue and red circle colors indicate association to
the 50 percent band, 100 percent band, and outliers. The projection bagplot is able to show correct band associations for members while the
bivariate bagplot misplaces some encounter instances with respect to bands.

with moderate to high tumor size and malignancy and appear to be
outliers with respect to both recurrence and nonrecurrence classes.
Another interesting region of interest is J where there are instances
of older individuals with large tumor size and varying malignancy
also appearing as outliers with regard to both classes.

5. Discussion

This paper provides a solution to visualize high-dimensional data
(d ≥ 3) with order statistics in a manner that is popular for visual-
izing lower dimensional datasets. Similar members are positioned
close in the embedding, and central or typical members appear to
be more toward the center than outlying or atypical members. To
achieve such an embedding, one might consider simply augmenting
the data with an additional dimension containing data depth values.
However, such an approach fails to take into account the anisotropic
structure of data, and pushes for members with similar depth to
be placed at similar distance from center regardless of direction
from center; with members having higher depth value being placed
closer to center. On the other hand, OAP allows more flexibility by
allowing the rate of fall of depth values to vary smoothly across ad-
jacent directions, as long as depth values drop monotonically along
each direction. This flexibility is helpful to better preserve pair-
wise distances, particularly in frequently seen cases where points
near the boundary along the minor axis are projected close to the
median. For example, the proposed methods allow the point X in
Fig 2 to remain close to the median while also indicating that it
is more outlying than it appears in the MDS projection (compare
Fig 2a versus Figs 2d and 2e).

Oftentimes, multidimensional data to be analyzed is heteroge-
neous, which means that it includes both numerical and categori-
cal dimensions. Our approach is able to handle such data since its

only requirement is a way to compute distances and center outward
order statistics, which can be computed for such data [MWK17].
Such data are often seen as input for machine learning tasks (e.g.,
classification or clustering), and the proposed methods can be valu-
able to understand the structure of kernel spaces where those tasks
are performed. A key feature of the proposed projection method
(OAP) is its ability to integrate distances and order statistics from
different spaces as shown in Secs 4.3 and 4.4. We may also use or-
der statistics with any other (possibly non data depth) method that
may be appropriate for the application at hand [Wil17].

In case of multimodal data without known class membership in-
formation, OAP can lead to significant misrepresentation of dis-
tances if we compute data depth with respect to all points. This is
because standard data depth methods measure geometric central-
ity could assign high depth values for points in region between the
clusters, even if the region is sparsely populated; low density does
not imply low centrality (see point M in Fig 9a). Furthermore, ge-
ometric centers of various clusters would be assigned low depth
values if they do not lie near the geometric center of the entire dis-
tribution (see points N in Fig 9a). Such an assignment of depth,
although technically correct , can lead to an embedding where clus-
ter centers seem less prominent than surrounding points. One way
to make cluster centers more prominent, which may be important
in multimodal data, is to first cluster the data and then compute
data depth, and monotonic fields, for each cluster separately (see
Fig 9b).

The proposed projection method (OAP) requires manual adjust-
ment of two parameters: ωp, which controls the relative empha-
sis on the centrality structure with respect to preserving pairwise
distances, and `, which controls the lag between updates of the
monotonic field. Too small values of ωp will converge to the MDS
layout, while too large values of ωp can cause unnecessary distor-
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(a) (b)

Figure 8: Breast cancer data visualizations: (a) bivariate bagplot using MDS, and (b) projection bagplot using order aware projection
(OAP). Each circle represents a set of patient attributes. The data contains two classes based on patient outcomes: recurrence (red) and
nonrecurrence (blue). The recurrence class is seen to deviate from normal while the nonrecurrence class presents a more coherent distribution
based on recorded attributes.

(a) (b)

Figure 9: Field overlay plots using order aware projection (OAP)
for synthetically generated 3D multimodal data set with unknown
class membership. Order statistics are computed using half space
depth (a) for all points in data set together, and (b) for each cluster
separately after a clustering step using k-means method.

tion. We find that values between 1 and 3 for ωp provide a good
balance. In case of `, too small can cause instability that prevents
convergence. The instability arises due to a possibility of (typically
small) increase in overall energy accompanying computation of the
monotonic field. With sufficiently large `, this increase is more than
compensated after points adjust to the new field. On the other hand,
too large values of ` can delay convergence due to delayed spline
updates. We use ` = 25 for all examples in this paper. During the
iterative optimization process, the computational cost of iterations
involving an update of the monotonic field is O(n3)—arising from
computation of the thin plate spline (Sec 2.4). However, the major-
ity of iterations do not involve field updates and incur a lower cost
of O(n2) operations.

6. Future Work

An important area of application for our method is the visualization
of data in kernel spaces (Secs 4.3 and 4.4). While we use set band
depth for kernel-based examples in this paper to obtain order statis-
tics, often the only option is to compute depth directly in the kernel
space, for example, in the case of ensembles of structured data such
as chemical compound graphs [DLdCD∗91]. Since existing meth-
ods for computing depth are not suitable for high-dimensional ker-
nel spaces, which is often the case with graph kernels [VSKB10],
a method to compute depth in such spaces would expand the scope
of data that could be visualized using the proposed method. Such a
method to compute depth would need to address the limitations of
existing methods by being efficiently computable in high- dimen-
sional spaces as well as having an inner product based formulation
for operating in kernel spaces.

Another exciting avenue for future work would be to extend the
proposed approach to work with manifold-based dimensionality
reduction techniques such as Isomap and tSNE, which motivates
the need to develop data depth methods that are also able to oper-
ate with respect to manifolds. Automatic estimation of parameter
values based on the data to achieve an optimum balance between
conveying distances and centrality would also be useful. Finally,
projection bagplot visualization could complement other methods
for set visualization such as tabplot [TdJD∗13] and parallel coordi-
nates [YNMX17] as part of an integrated, interactive system with
linked views.
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