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ABSTRACT

Ensemble data sets appear in many domains, often as a result of a collection of solutions

arising from the use of different parameters or initial conditions in simulations, mea-

surement uncertainty associated with repeated measurements of a natural phenomenon,

and inherent variability in natural or human events. Studying ensembles in terms of the

variability between ensemble members can provide valuable insight into the generating

process, particularly when mathematically modeling the process is complex or infeasible.

Ensemble visualization is a way to understand the underlying generating model of

data by studying ensembles of solutions or measurements. The objective of ensemble

visualization is often to convey characteristics of the typical/central members, outliers,

and variability among ensemble members. In the absence of any information about the

generative model, a family of nonparametric methods, known as data depth, provides a

quantitative notion of centrality for ensemble members. Data-depth methods also form the

basis of several ensemble visualization techniques, including the popular Tukey boxplot.

This dissertation explores data depth as a basis for visualizing various types of data

for which existing visualization methods are either not directly applicable or present sig-

nificant limitations. Such data include ensembles of three-dimensional (3D) isocontours,

ensembles of paths on a graph, ensemble data in high-dimensional and inner-product

spaces, and graphs. The contributions of this dissertation span the following three aspects

of data-depth based visualizations: first, development of new data-depth methods that

address the limitations of existing methods for computing center-outward order statistics

for various types of ensemble data; second, development of novel visualization strategies

that use existing and proposed data depth methods; and third, demonstration of the effec-

tiveness of the proposed methods in real motivating applications.
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CHAPTER 1

INTRODUCTION

Recently, a combination of sensors, personal devices, and computational and commu-

nication infrastructure has resulted in large amounts of complex data. Analyzing such

data to gain useful insights is important in a range of applications. Often the data are

in the form of a group or collection of related entities called ensembles. These entities or

ensemble members typically share an underlying generating process while also displaying

variability among members. This variability can originate from various causes, such as

variability in parameters or initial conditions in simulations, measurement uncertainty

associated with repeated measurements of a natural phenomenon, and inherent variability

in natural or human events. Ensembles that provide information about variability between

members can therefore be valuable in understanding the generating process, particularly

when mathematically modeling the process is complex or infeasible.

Data in applications spanning several domains originate from complex underlying

processes. For example, meteorologists use complex models that are highly sensitive to

parameters and initial conditions to generate ensembles of prediction data to understand

the probabilities of specific weather and climate-related events [42, 101]. In the area of

hurricane prediction, meteorologists analyze ensembles of potential hurricane trajectories

obtained by a Monte Carlo simulation [60]. Researchers in the medical community use

collections of magnetic resonance imaging (MRI) and functional MRI (fMRI) images of the

brain to understand changes that occur in brain structure during neurological disorders,

such as Alzheimer’s disease [4]. Scientists study the process of protein folding by running

multiple simulation runs of the folding process [8]. The proteins transition to a final

stable state after passing through a set of stochastically determined intermediate states.

In such applications, we can gain insights about the generating process by understanding

the ensemble data.
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Visualization can be a useful asset for understanding data. Scholars have been us-

ing visualization as a tool to understand and convey data for hundreds of years [72, 83].

Visualization brings humans into the process of data analysis, and allows them to take

advantage of the high bandwidth of the human visual perception system to comprehend

data [76]. The advantage of suitably chosen visualization is clearly seen in scatter plots

of the well-known Anscombe’s quartet [7], which consists of four multivariate data sets

with identical mean, mode, and median (see Figure 1.1). The difference between the

data sets is immediately apparent in scatter plot visualizations. Visualizations help hu-

mans use the data to quickly gain insights and form hypotheses. Benefits of visualization

are particularly relevant when dealing with complex data such as ensemble data sets.

Consequently, a significant amount of research has been carried out to develop effective

ensemble visualization techniques.

Ensemble visualization techniques can be broadly classified into the following three

classes: parametric methods that convey probabilities for features of interest, enumera-

tion methods that directly display ensemble members, and nonparametric methods that

convey summary statistics. Figure 1.1 shows the discrepancies that can occur between

(a) (b)

(c) (d)

Figure 1.1. The Anscombe quartet. The four data sets in (a), (b), (c), and (d) have the same
summary statistics: mean, standard deviation, and correlation. The red line shows the
linear regression line for each data set.
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parametric models and enumeration. Whereas parametric methods require some knowl-

edge or assumptions regarding the generating process, enumeration can occlude details in

the case of large ensembles and complex objects. In contrast, nonparametric summaries

have proven to be effective for characterizing large and complex ensemble data without

any assumption about the underlying generating processes [86]. This class of ensemble

visualization techniques typically involves two steps: 1) identification of key features of

interest in ensembles; and 2) effective visualization of those features.

In ensemble data, key features of interest often include summary statistics, such as

most representative members (e.g., mean or median); least representative members, also

known as outliers; and the variability in the ensemble. For an ensemble of univariate

points, a Tukey boxplot highlights the key features, such as the median, outliers, 50% band,

and 100% band [108] (see Figure 1.2). Given a univariate random variable X, a median

is defined as the point in the distribution with the lowest expected sum of distances from

all points in the distribution. For a set of points, S, randomly sampled from X, a sample

median is defined as the point in S with the lowest sum of distances to all other points

in S. For univariate points, the median is situated at the midpoint of the data set or the

distribution, such that there is an equal probability for a random sample of falling above

or below it (see Figure 1.3a and Figure 1.3b). Another important summary statistic is the

mean, which is defined, with respect to a distribution, as the point that minimizes the

expected sum of squared distances from all points in a distribution. The sample mean, also

known as the average, minimizes the sum of squared distances from all points in a sample

set (see Figure 1.3c). For univariate data, both L1 and L2 distance metrics lead to identical

Figure 1.2. A Tukey boxplot summarizes 1D data by showing order-based statistics, such
as the median, 50% band, and outliers.
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(a) (b)

(c)

Figure 1.3. Summary statistics in univariate data. (a) A random sample of points from a
univariate normal distribution and their probability density function (PDF). The median
and mean are indicated using blue and red markers, respectively, along the x axis. (b) A
cumulative density function (CDF) plot and (c) sum of L1 distances and sum of squared L1
distances for each point in the sample. We see that the minimas are located at the median
and mean, respectively.

results. Given two points x,y ∈ Rd, where d ≥ 1, the L1 and L2 distances can be stated as:

dL1(x, y) = ∑
i
|xi − yi| (1.1)

dL2(x, y) =
[

∑
i

(
xi − yi

)2
] 1

2

(1.2)

where | · | denotes the absolute value.

The sum of distances from all points in the data set also provides a way to order

or sort the points in the data set. This approach provides a center-outward ordering

of points starting with the median (lowest sum value). The Tukey boxplot uses such a

center-outward ordering of points to determine other summary statistics, such as the 50%
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and 100% bands. The points that have sum of l1 distances in the lower 50 percentile are

considered to be in the 50% band (see Figure 1.3d). The span of the 50% band is expanded

about the median by a constant factor to obtain the 100% band. A center-outward order

using sum of distances (L1 or L2), despite being useful for visualizing univariate data, is

not as effective for visualizing more complex data types such as multivariate points. This

lack of effectiveness is because distance-based approaches for determining center-outward

order do not fully capture the structure of multivariate data since they fail to consider

correlations in the data (see Section 2.2.1). There exists a more general measure, however,

that is effective in determining center-outward order statistics for ensembles of complex,

multivariate data.

Data depth is a measure of how central or outlying a given point is with respect to a

multivariate data cloud or its underlying distribution [63]. The introduction of several

notions of data depth has led to the development of a family of data-depth methods for

quantifying the centrality of points in multivariate ensemble data. These methods provide

a numeric, center-outward order statistic for multivariate data. In this dissertation, we use

the term ”order structure” to refer to center-outward order statistics, which describe the

inward-outward relationship among data members with respect to some property, such as

data depth. Data-depth methods have also been proposed for a variety of data types such

as multivariate points [93] and curves [73], functions [66], and isocontours [115]. For each

type of data, researchers have developed visualization strategies that use order statistics

provided by data depth to convey key features in the data. Visualization practitioners over

the past several years have been using data-depth-based visualizations to gain insights

into and understand the general structure of ensemble data [61, 88]. However, there are

several situations where existing data-depth-based-visualizations are either not applicable

or could potentially fail to capture important features.

One shortcoming of state-of-the-art data-depth-based methods is their limited ability

to tackle data types that are not in Rd, where d ∈ N+; for example, path ensembles on

graphs. A graph is a collection of entities (nodes) and relationships (edges). A path on a

graph is a sequence of nodes on a graph that share an edge. Path ensembles on graphs are a

type of ensemble data that appear in several domains. For example, packets traveling from

a source node to a destination on the Internet often take different paths as determined by
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routing algorithms [19]. Similarly, a variety of paths are typically possible for traveling

to a destination on road networks, which are often modeled as paths on graphs [46].

Another domain where path ensembles appear as a mode of representing information is

in molecular dynamics simulations of protein folding [8]. The energy landscape of protein

structural configurations is often modeled as a graph. In such models, the path taken by

a folding protein to reach a stable state involves stochastic transition probabilities along

edges leading to an ensemble of paths over multiple simulation runs. In such applications,

there is a need to understand the structure of path ensembles in terms of typical and outlier

members.

In addition to paths, visualizing the importance of nodes in the context of relationships

on a graph is also important in many applications, particularly in social networks [17].

A common approach to determine the importance of nodes is to consider more central

nodes as more important [15]. The graph theory literature offers several methods to define

centrality using the topology (and edge weights) of a graph, including quantifying the

centrality of a node based on the number of incident edges, the sum of distances to other

nodes, and the number of shortest paths passing through the node [37]. Researchers

have proposed various methods to visually convey the centrality of nodes using node-link

drawings [10, 16]. However, those methods often do not accurately represent internode

distances, which are an important aspect of graphs in node-link drawings.

Another type of data that is challenging to handle with existing visualization methods

is data in high-dimensional spaces (d > 2). Popular state-of-the-art methods for visu-

alizing high-dimensional data determine a low-dimensional, typically two-dimensional

(2D), embedding of the data by attempting to preserve distances between points/members

as much as possible. Such methods often do not preserve the order structure of data;

essentially, they fail to ensure that more central members in the data appear more central

in the embedding. The inaccurate representation of order structure can be attributed to the

exclusive focus of current dimensionality reduction methods on preserving the distances

between ensemble members while ignoring aggregate statistical properties of the data,

such as the order structure.

Dimensionality reduction methods are also used to visualize ensembles of data in im-

plicit feature spaces that are defined using inner products. In such cases, the dimension-
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ality as well as coordinate axes of the feature space are unknown, making it infeasible for

existing data-depth methods to effectively determine the order structure of data. Other

challenging data types include ensembles of three-dimensional (3D) shapes, which are

often seen in the domain of medical imaging, and remain difficult to visualize due to the

structural complexity of such data and the problem of occlusion.

1.1 Contributions
This dissertation introduces new visualization techniques for several kinds of ensemble

data that address various shortcomings of state-of-the-art data-depth- or metric-based

visualizations, including novel techniques to compute center-outward order statistics and

novel visualization strategies based on such order statistics. Specifically, the contributions

of this dissertation are as follows:

• Evaluation of 3D shape alignment using ensemble visualization. We show that ensemble

visualization techniques can be effective for evaluating 3D shape alignment. We also

extend the contour boxplot visualization technique for 3D shape ensembles.

• A method for computing data depth and a visualization strategy for path ensembles on a

graph. Given an ensemble of paths on a graph, we introduce the path band depth

method for determining data depth for paths by considering the global structure of

the path ensemble. We also introduce path boxplot visualization for visualizing path

ensembles using path band depth.

• A method for visualizing node centrality while also preserving internode distances in node-

link diagrams of graphs. We determine node positions in a graph drawing by mini-

mizing an energy function that contains two terms: the first term penalizes deviation

between internode distances along edges and the embedding, and the second term

penalizes drawings that inaccurately represent node centrality with regard to the

graph structure.

• A method for visualizing high-dimensional data using order statistics. We determine a

lower dimensional embedding for high-dimensional data by minimizing an energy

function that contains two terms: the first term penalizes deviation between dis-

tances in the original or intrinsic space, and the second term penalizes embeddings
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where points are projected to positions that inaccurately represent their order struc-

ture in the intrinsic space. We also introduce two visualization strategies, field over-

lay plot and projection boxplot, to visualize the lower dimensional embedding.

• A method to compute data depth in high-dimensional inner product spaces. Given an

ensemble of points in any inner product space, the ellipse band depth method com-

putes data depth by estimating the probability of points to be contained in a set of

ellipses described by a randomly chosen pair of points.

1.2 Overview
Chapter 2 provides an overview of the technical details that are important to under-

stand the work in this dissertation. The technical details include a discussion on order and

rank statistics, the notion of data depth, useful properties of data-depth measures, and

various classes of data-depth techniques.

Chapter 3 demonstrates the utility of using various ensemble visualization techniques

for the task of evaluating 3D shape alignment in the context of a specific medical imaging

application: constructing brain atlases, which are a representative image for an ensemble

of brain MRI images. The visualization techniques include averaging, enumeration, and a

3D extension of the contour boxplot visualization [115]. The work described in this chapter

is published in IEEE Computer Graphics and Applications [89].

Chapter 4 introduces a novel method to compute data depth for paths on a graph

called path band depth, which considers the global structure of the paths. This chapter

also provides a theoretical proof to show that the proposed method exhibits a desirable

property with regard to data depth (Section 2.2). Next, this chapter introduces a visu-

alization strategy for path ensembles based on path band depth called path boxplot and

demonstrates its utility with synthetic data and real data sets. The work described in this

chapter is published in the Journal of Computational and Graphical Statistics [90].

Chapter 5 introduces a novel technique to determine positions of nodes in a node-

link diagram of a graph such that the internode distances as well as the importance or

centrality of the nodes are conveyed correctly, as much as possible. This chapter also

describes an algorithm for determining node positions, and a novel visualization strategy

called anisotropic radial layout based on the resultant node positions. Finally, the chapter
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includes results using both synthetic and real data sets. The work described in this chapter

is published in the Proceedings of the 25th International Symposium on Graph Drawing and

Network Visualization (2017) [91].

Chapter 6 introduces a technique for embedding high-dimensional data in lower di-

mensional spaces such that order structure as well as distances between points in the

high-dimensional space is preserved, as much as possible. This chapter also describes a

modification to the technique that focuses specifically on dealing with multimodal data.

Finally, the chapter presents two visualization strategies that highlight the order structure

and related features such as the median and outliers and demonstrates the utility of the

proposed method using high-dimensional data from various application domains. The

work described in this chapter is to appear in Computer Graphics Forum (EuroVis) 2018.

Chapter 7 describes a novel method for computing data depth for high - data, called

ellipse band depth, that overcomes several shortcomings of existing methods for computing

depth such as half-space depth and functional depth. This method is able to efficiently

compute depth in very high-dimensional spaces using only inner product information

while also capturing the correlations in the data. Data depth computed using this method

can also be used in conjunction with the technique introduced in Chapter 6 for visualizing

high-dimensional data.

Chapter 8 provides a concluding discussion for this dissertation. This chapter also in-

cludes a discussion of shortcomings of the proposed methods as well as several interesting

avenues for further work.



CHAPTER 2

TECHNICAL BACKGROUND

This chapter provides a brief description of the technical background relevant to the

work in this dissertation. First, the chapter discusses order and rank statistics in ensemble

data. Next, it discusses the notion of data depth, various useful properties of data depth,

and three general approaches for computing data depth.

2.1 Order and Rank Statistics
This dissertation deals with understanding the statistical structure of ensemble data.

An important aspect of understanding the structure of ensembles is determining how

central or typical various members are with respect to the ensemble. Order and rank

statistics are descriptive statistics, which when selected appropriately, can help in deter-

mining the centrality of ensemble members. Methods proposed in this dissertation rely on

center-outward order and rank statistics to identify and highlight key members of interest

in ensemble data, such as median (most central) and outliers (least central).

2.1.1 Order Statistics

In the context of statistics, the kth order statistic in a sample set is equal to the value of

its kth smallest value. For example, if X = {x1, x2, . . . , xn} denotes a set of values that

are sampled from a random variable X, and X(i) is the ith smallest value in X , where

{1 ≤ i ≤ n}, then X(i) is called the ith order statistic of X . Determining order statistics

requires a way to sort the members in the sample set based on a specified criterion. If X

is a numeric random variable, ways to sort sample members include using the member

value, member absolute value, or even the sum of distances from all other members in the

sample set.
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2.1.2 Rank Statistics

Given a set of members X = {x1, x2, . . . , xn} sampled from a random variable X, the

rank vector, r = (r1, r2, . . . , rn), is defined such that

ri =
n

∑
j=1

δ(xi − xj), (2.1)

where δ(·) is the following indicator function:

δ(x) =

{
1 if x ≥ 0
0 if x < 0

. (2.2)

A rank statistic is any value that is a function of the rank vector. For example, the

median of a set of numbers is the highest ranking member when the numbers are sorted

based on a center-outward order statistic such as sum of distances from all numbers in the

set.

2.1.3 Order and Rank Statistics in Visualization

Key features of interest in ensemble data are often central/outlier members and vari-

ability, which can be identified using center-outward order and rank statistics. Conse-

quently, such statistics play an important role in visualizing many kinds of ensemble

data. Generating ensemble visualizations using order and rank statistics typically involves

two main steps: 1) analysis step: using an appropriate order/rank statistics to sort the

ensemble members and identify key members and features; and 2) visualization step:

highlighting the relevant information using visualization strategies specifically designed

for the particular type of ensemble data. The Tukey boxplot, discussed in Chapter 1, is an

example of ensemble visualization involving these two steps—analysis and visualization.

The Tukey boxplot conveys several interesting quantities derived from order and rank

statistics, such as the median (rank statistic); 50% band, which comprises the innermost

half of the members (rank statistic); and the 100% band and outliers (determined using or-

der and rank statistics). The design of the Tukey boxplot has inspired several other ensem-

ble visualization techniques for a range of different data types. These techniques include

the bagplot for bivariate data [93], functional boxplot for ensembles of functions [102],

curve boxplot for ensembles of multivariate curves [73], surface boxplot for ensembles of

2D functions [40], and contour boxplot for ensembles of sets/isocontours [115] as in Fig-

ure 2.1. These visualizations highlight key members such as the median and outliers as is
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(a) (b) (c)

(d) (e)

Figure 2.1. Examples of existing depth-based visualizations. (a) Bagplot for bivariate
points (principal components of sea surface temperature data) [48] c© 2010 Taylor and
Francis Group, (b) fuctional boxplot for ensemble of functions (sea surface temperatures
for 12 months) [48] c© 2010 Taylor and Francis Group, (c) surface boxplot for ensembles of
2D fields [40] c© 2014 John Wiley and Sons, (d) contour boxplot for curves (synthetically
generated) [115] c© 2013 IEEE, and (e) curve boxplot for ensemble for curves (hurricane
paths) [73] c© 2014 IEEE.

the case in the Tukey boxplot. The analysis step for these visualizations uses specialized

methods designed for particular data types, such as functions, curves, or sets, to compute

order and rank statistics.

2.2 Data Depth
Data-depth methods provide a quantitative notion of centrality for multivariate data.

A depth function that evaluates the depth of a point, x ∈ Rd, with respect to a random

variable X ∈ Rd has the general form: D(x; FX) : Rd × F → [0, 1], where FX is a probability

distribution over X, F is the class of probability distributions on Borel sets of Rd, and FX ∈

F. The notion of centrality provided by data-depth methods has been useful in several
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applications, such as visualization [93, 102], classification [111], and outlier detection [21].

Researchers have proposed several data-depth methods for analyzing multivariate data,

such as L2 depth, zonoid depth [30], half-space depth [107], etc. Although the specific

characteristics of the various data-depth methods may vary, they rely on a set of common

desirable properties [124]: affine invariance, maximality at center, monotonicity relative to

deepest point, and vanishing at infinity.

• P1: Affine Invariance

Assumption: Let FX be a probability distribution over a Borel set of Rd.

Property: The depth of any point x ∈ Rd should be independent of the underlying

coordinate system, particularly the scales of the measurement along each axis.

D(Ax + b; FAX+b) = D(x; FX). (2.3)

• P2: Maximality at Center.

Assumption: Let FX be an angularly symmetric distribution over a Borel set of Rd

with a uniquely defined center, c.

Property: The depth at the center should be highest with respect to all other points in

the distribution.

D(c; FX) = sup
x∈Rd

D(x; FX). (2.4)

• P3: Monotonicity Relative to Deepest Point. Assumption: Let FX be an angularly

symmetric distribution over a Borel set of Rd with a uniquely defined center, c.

Property: As a point x ∈ Rd moves away from center c in the direction of any fixed

ray, the depth at x should decrease monotonically.

D(x; FX) ≤ D(c + α(x− c); FX) , ∀α ∈ [0, 1]. (2.5)

• P4: Vanishing at Infinity.

Assumption: Let FX be a probability distribution over a Borel set of Rd.

Property: The data depth of a point x should approach zero as ||x|| approaches infin-

ity.

lim
||x||→∞

D(x; FX) = 0. (2.6)
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2.2.1 Data-Depth Approaches

Several notions of data depth exhibit the above properties. These notions can be broadly

classified into three classes according to the approach of determining depth: distance

metric, weighted mean, and space partition [77].

2.2.1.1 Distance metric

In depth functions based on a distance metric, depth of a point x is commonly defined

as the inverse of the expected distance from other points in a distribution. Various dis-

tances metrics, such as L2 or Mahalanobis distances, can be used to obtain depth functions

with different properties. For example, the L2 depth can be stated as:

D(x; X) = (1 + E[||x− X||2])−1 (2.7)

Although distance-based depth measures are simple and efficient to compute, they are

often unable to properly account for the shape of anisotropic distributions. For exam-

ple, in anisotropic distributions, points at extremes along a minor axis would tend to be

assigned depth values similar to points along a major axis that are closer to the center

(see Figure 2.2).

2.2.1.2 Weighted mean

Weighted-mean regions are nested convex regions that are centered around the geo-

metric center of a distribution. These convex regions are composed of weighted means

(a) (b)

Figure 2.2. Distance-based depth for an anisotropic distribution. (a) A synthetic ensemble
of points on a grid that comprises two crossing ellipses with horizontal and vertical major
axes. (b) Normalized L2 depth values for the point ensemble shown using a heatmap. We
notice that points at the extremities of the vertical ellipse have depth values similar to the
inner points in the horizontal ellipse.
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of the data members, with a general set of restrictions on the weights that ensure their

nested arrangement. This arrangement of nested convex weighted-mean regions is then

used to determine the data-depth value of each data member. Various strategies of the

assigning weights lead to different notions of weighted-mean depths [77]. An example of

a weighted-mean depth is the Zonoid depth [30].

Let x, x1, . . . , xn ∈ Rd. Then the zonoid depth of x with respect to x1, . . . , xn is

Dzonoid(x; X) = sup{α : x ∈ Dα(x1, . . . , xn)},

where

Dα(x1, . . . , xn) =

{ n

∑
i=1

λixi :
n

∑
i=1

λi = 1, 0 ≤ λi, αλi ≤
1
n

for all i
}

.

Here Dα(·) denotes the weighted-mean region that indicates the region with a depth greater

than α and is also known as the α-trimmed region. Note that when α = 1, the weighted-

mean region collapses to the mean of the data, whereas 0 ≤ α ≤ 1
n leads to a weighted-

mean region that is the convex hull of data.

Weighted-mean-based formulations of depth, in comparison to the distance-based for-

mulations, are more effective in capturing the shape of the distribution (see Figure 2.3).

However, weighed-mean formulations are more susceptible to outliers in data as the shape

of the weighted-mean regions, and consequently data depth, can be strongly influenced

by pathological outliers. They are also more computationally expensive and often involve

solving an optimization problem.

Figure 2.3. Normalized zonoid depth values for point ensemble in Figure 2.2a shown
using a heatmap. Points at the extremities of both ellipses have been assigned the lowest
depth values, unlike in the case of L2 depth (see Figure 2.2b).
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2.2.1.3 Space partition

Another class of data-depth techniques relies on partitions of the data space. These

methods often involve two general steps: 1) a method to partition the space based on

various combinatorial subsets of the ensemble data; and 2) determining whether the en-

semble members are located within the partitioned subspace. Methods based on space

partitioning can be further classified into the following two categories based on the kind

of partitions: half-space and band partitions.

The half-space depth, introduced by Tukey, relies on half-space partitions and is a

popular way to compute data depth for multivariate data in Euclidean space. Half-space

depth of any point x ∈ Rd with respect to X ⊂ Rd is determined as the smallest number

of data points from X that can be contained in a closed half space also containing x.

Unlike weighted-mean-based depths, half-space depth is robust to pathological outliers.

However, the computing half-space depth can quickly get intractable as the dimension of

the data spaces increases.

Several methods to compute data depth rely on the definition of a band, which is a par-

tition of data space that is determined by a subset of data. For example, in simplicial depth,

the band is defined as the convex hull, and the simplicial depth of any point x ∈ Rd with

respect to X ⊂ Rd is determined as the probability of it being contained in a convex hull

determined by d + 1 points randomly chosen from X . Band-based methods or band-depth

methods are also able to capture the shape of a distribution better than half-space depth,

particularly, in the case of nonconvex-shaped multivariate distributions (see Figure 2.4).

(a) (b)

Figure 2.4. Normalized (a) half-space depth and (b) simplicial depth for point ensemble
in Figure 2.2a shown using heatmaps. Simplicial depth shows a larger spread of depth
values for points that lie along the vertical ellipse.
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Recently introduced band-depth methods focus on computing data depth for ensembles

of several non-Euclidean data types such as functions [66] and sets [115].

2.2.1.4 Extensions to graphs

The notion of centrality also plays an important role in the domain of graph analytics,

particularly for social network analysis, where more central or deeper nodes are considered

more important [37]. Researchers have proposed several methods to quantify the centrality

of nodes on a graph, such as degree [37], closeness [94], and betweenness centrality [37]

(see Figure 2.5). These methods determine node centrality by relying only on the graph

structure, i.e., edge connectivity and weights, and can be considered extensions of data-

depth methods to the graph domain. For example, the closeness centrality of a node is the

reciprocal of the sum of its graph theoretical distance to all other nodes, and is analogous

to the data-depth approach based on distance. Betweenness centrality counts the number

of shortest paths that pass through a node, which in essence is similar to the data-depth

approach based on band partition. In the case of betweenness centrality, the shortest paths

can be considered to be bands described by pairs of nodes on the graph.

A significant part this dissertation deals with the visualization of graph-based data,

such as nodes and paths on a graph. In Chapter 4, we introduce graph-geodedic-hull-band

depth, which is an extension of simplicial depth to graphs. In Chapter 5, we use graph

centrality to determine an order structure for nodes on the graphs, which is then used for

drawing visualizations that correctly convey the order structure.
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(a) (b) (c)

Figure 2.5. A node-link diagram of a synthetic graph where node sizes encode (a) degree,
(b) closeness, and (c) betweenness centrality. Degree centrality is higher for nodes with
more neighbors, closeness centrality is higher for nodes that have a lower sum of distances
to other nodes, and betweenness centrality is higher for nodes that lie on more of the
shortest paths between other nodes.



CHAPTER 3

EVALUATING SHAPE ALIGNMENT VIA

ENSEMBLE VISUALIZATION

Portions of this chapter have been reproduced with permission from IEEE and is based

on material published in CG&A, Evaluating Shape Alignment via Ensemble Visualization,

M. Raj, M. Mirzargar, J.S. Preston, R.M. Kirby and R.T. Whitaker, vol. 36, 2016, pp. 60-

71 [89].

3.1 Introduction
As computational tools for simulation and data analysis have matured, researchers,

scientists, and analysts have become interested in understanding not only the deterministic

output of these tools, but also the uncertainty associated with their computations and/or

data collection. Consequently, there is an increasing interest in uncertainty quantification

(UQ) as an integrated part of simulation and data science in a wide variety of science

and engineering disciplines. UQ views the simulation and data science pipelines as a

random process containing possibly both epistemic (i.e., reducible) and aleatoric (i.e., by

chance) uncertainty. Quantification efforts in this random process are divided into roughly

two categories: 1) efforts to understand the uncertainty and/or variability of the process

through an examination of instances (samples) of the process; and 2) efforts to determine

models (e.g., probability theory) that capture the nature of the process. The first of these

categories, and the focus of this study, utilizes an ensemble of solutions meant to capture the

inherent variability or uncertainty in a computational or data science pipeline. Although

we assume that the variability seen in the ensemble can be attributed to some condition or

property of the generating process, we do not assume that articulation of the process via

a mathematical model is straightforward, and hence we have only the ensemble members

themselves to gain insight into the originating process.

Studying an ensemble in terms of the variability or dispersion between ensemble mem-
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bers can provide useful information and insight about the underlying distribution of pos-

sible outcomes. Correspondingly, ensemble visualization can be a powerful way to study

this variability; however, a key challenge here is to be able to convey the variability among

ensemble members while preserving the main features they share. Preservation of these

features is particularly challenging in cases where the ensemble members are not fields

over which statistical operations such as mean and variance are well defined, but instead

are derived or extracted features such as isosurfaces.

In this chapter, we examine the effectiveness of the contour boxplot technique [115], a

descriptive summary analysis and visualization methodology, in the context of a particular

medical data science application: brain atlas construction and analysis. We conducted an

expert-based evaluation of the visualization of ensembles generated through the alignment

of shapes using the deformation of images in the construction of atlases (or templates) for

brain image analysis. To accomplish this evaluation, we constructed a prototype system

for visualizing and interacting with ensembles of 3D isosurfaces through a combination of

3D rendering (isocontouring) and cut-planes (slices through 3D volumetric fields). In addi-

tion, we generalized the algorithm in [115] to three dimensions as a direct extension of their

analysis of isocontours to isosurfaces – that is, from co-dimension one objects embedded in

2D to co-dimension one objects embedded in 3D. This generalization allows us to compare

contour boxplot summaries of an ensemble to both full enumeration of the ensemble as

well as other traditional means of atlas evaluation (e.g., qualitative visual inspection of

slices of the atlas image or individual volumetric images used for construction of the atlas).

We employ this system to explore, in collaboration with domain experts, the efficacy of

using ensemble visualization techniques for evaluating 3D shape alignment of brain MRI

images.

The purpose of this chapter is to study and evaluate the use of contour boxplots in a

real-world data science application, the alignment of 3D shapes or surfaces in a population-

based ensemble. Our hypothesis is that the contour boxplot will allow users to summarize

their data in a meaningful way that allows either better or more efficient (faster) assessment

of the atlas construction as compared to explicit enumeration of the ensemble (i.e., looking

at each member image individually) or through more coarse-grained characterizations

such as examination of the average intensity image or label (segmentation) probability
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maps. As our evaluation results will show, the contour boxplot methodology has the

potential to significantly benefit the application under study by providing a visualiza-

tion of the quantitative summaries of the ensemble. Although we have formulated our

hypothesis in the context of a particular application, we believe that our evaluation may

provide insight into other arenas where visualization and analysis of ensembles of shape

are desired. Examples of such applications will be discussed in the conclusion section.

To begin, we give a brief introduction to the process of brain atlas construction and the

evaluation process used by domain experts.

3.1.1 Brain Atlas Construction

Construction of an anatomical atlas for a collection of brain images is an important

problem in medical image analysis. The goal of various atlas construction schemes is

to construct a statistical representative image and associated set of coordinate transforma-

tions (i.e., deformations) from an ensemble of images [50]. Anatomical atlases provide a

common coordinate system (atlas space) in which to define reference locations of brain

structures. As part of the atlas construction process, nonlinear registration techniques

generate deformations that can map the anatomies in an individual image to the atlas

space (see Figure 3.1). The atlas construction process jointly estimates a representative

image defining the atlas space (the atlas image) and the deformations aligning individual

images to this atlas image (i.e., mapping the image individually to the atlas space). The

atlas image generated by these techniques then represents the average (or normal) anatomy

of this population. Such atlases help domain experts characterize the expected anatomical

structure and variability of a population and compare different populations in terms of

their group atlases (for example, healthy and unhealthy groups). Differences in the at-

las anatomy can be identified both qualitatively by inspecting unaligned structures (when

mapped to the atlas space) and quantitatively by analyzing the deformations, quantifying

the amount of change necessary to bring individual ensemble members into alignment.

Atlas generation is an automated process, but it is not parameter free, and the choice of

parameters can greatly influence the quality of the result. In particular, nonlinear deforma-

tions computed for medical image registration are a tradeoff between image matching and

plausible deformations. For example, the deformation should not result in the elimination
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Figure 3.1. An atlas construction scheme involves deformation and registration of all
ensemble members to the atlas. The process of deformation and registration of ensemble
members is called transformation to the atlas coordinate system or the atlas space.

of anatomical features or noninvertible transformations. Hence, the deformation is often

controlled by tuning parameters to find a compromise between the mismatch between im-

ages and the regularity (e.g., smoothness) of the transformation. Due to the regularization

of the deformations and the inherent anatomical differences between ensemble members,

not all features will be perfectly aligned. This imperfect alignment is manifested as blurring

in the atlas image where there is disagreement regarding voxel intensity among ensemble

members when mapped to the atlas space.

Correct tuning of the regularization parameters allows the deformations to account

for as much anatomical variability as possible by correctly aligning the corresponding

anatomy, and not simply matching similar intensities. This alignment of corresponding

anatomy is essential for an atlas to be effective in later statistical analysis of the population.

Convergence of the optimization can be easily checked, but the degree of alignment of

particular structures is analyzed qualitatively by observing the amount of blurring in the

atlas image and by checking the alignment of each ensemble member (deformed to atlas

space) to the atlas image. The initial alignment is often unsatisfactory, which results in an

iterative process of parameter tuning and rerunning the atlas generation process.

In addition, due to problems with image scans, extreme variability among the ensemble
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members, or incorrect preprocessing, it may not be possible to achieve reasonable align-

ment to the atlas image for some set of outlier images. Identification and removal of such

images is often another part of the atlas generation procedure. Automated measures of

global image alignment are available, but they do not give insight into why or in which

spatial regions particular ensemble members have poor alignment. Depending on the

proposed application of the atlas, these insights may be pertinent to the decision to prune

or keep particular images (ensemble members).

This manual iteration of parameter tuning/pruning and atlas generation eventually

yields the final atlas to be used in further analysis. There are two important points to be

noted about the final atlas image. The first is this representative image/segmentation is not

a member of the ensemble itself, but rather an image/segmentation generated through

statistical operations on the deformation fields. That is to say, it is not a member of

the population that best represents the population, but rather an attempt at statistically

characterizing a representative image. Second, as noted above, the iterative process does

not guarantee that the resulting atlas image is crisp – that is, that there are no blurry

regions in the image. The ensemble of images compared to the atlas image scenario is

similar in spirit to the feature-space averaging issue highlighted in [115]; the analogy is

that the isosurface (e.g., segmentation) of the average field is oftentimes not equivalent

to a representative of a set chosen from isosurfaces of the individual fields. As per the

rationale given in [115], the avoidance of feature-space averaging is why we believe the

contour boxplot methodology provides a useful way to summarize the type of ensemble

data where analyzing feature sets and their representatives is important. Since the manual,

qualitative evaluation of shape alignment (as a result of image registration) is a challenging

task, quantifying the variability of the shape alignment and visualizing this variability can

facilitate the domain experts’ ability to effectively validate the atlas construction scheme.

In Section 3.2, we introduce a prototype system that uses various uncertainty visu-

alization schemes to enhance the study of variability in an ensemble of shapes. Before

introducing our prototype system, we first provide an overview of the data used as well

as a high-level description of our expert evaluation study.
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3.1.2 Data Preprocessing for Atlases

The images analyzed in this chapter are 3D MRI images obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database [49]. Each brain image in our ensemble

was also provided with a corresponding label map volume with various anatomical struc-

tures segmented and marked, with each brain region having a unique integer value. In

order to analyze a specific structure within the brain anatomy, we used the label assigned

to that structure to select it and mask out the remaining region in all members of the

ensemble. The atlas construction scheme we used is the unbiased diffeomorphic atlas

proposed by Joshi et al. [50], implemented as part of an open-source medical image atlas

construction package called AtlasWerks [97]. We constructed atlases from ensembles of

MRI images using different choices of parameters and/or different ensembles (i.e., subject

groups). In each case, after constructing the atlas using the MRI images, the corresponding

label map images were transformed to the common (atlas) coordinate space using defor-

mation fields calculated during the atlas construction process as described in Section 3.1.1.

These transformed label maps were then passed as input to the preprocessing pipeline

(described in Section 3.2) for visualization. For a well-constructed atlas, we can expect

the anatomical structures in the brain to have a relatively small amount of variability after

being transformed to the atlas space. We selected two anatomical structures in the brain

expected to pose different levels of difficulty during atlas construction, namely the left

ventricle and the cortex. The ventricle is often considered as a very distinct structure (i.e.,

high contrast) in the brain image and, therefore, can be expected to exhibit good alignment

among ensemble members in the atlas space (if all goes well). The cortex was selected as

an example of an anatomical structure with a complex shape (see Figure 3.2), a significant

challenge for registration/alignment.

3.1.3 Expert Evaluation Study Details

Domain experts use various open-source or commercial packages to visualize slices

from individual volumetric images or simply from the average of the aligned images, but to

the best of our knowledge, ours is the first attempt to study the alignment of shapes in atlas

construction using ensemble visualization techniques. For our evaluation study, we had

access to a group of five domain experts who work with atlases on a regular basis and who
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Figure 3.2. Illustration of the cortex (green) and the ventricle (red). This image shows
the segmentation provided by the label map volume for a typical ensemble member. The
coarseness of the segmentation seen in this label map is mitigated by smoothing for the
final visualization.

volunteered to participate in our expert evaluation study. This group included graduate

students, staff researchers, and faculty who use atlases and medical image ensembles in

their research projects.

We asked the participants to explain their current methodology for evaluating the atlas

construction scheme as well as the quality of the atlas in terms of being a representative

of the ensemble. As mentioned earlier, we learned that this process is often performed

qualitatively. A visual inspection is carried out to ascertain whether the shapes of the

anatomical structures in the atlas space are realistic. Experts also mentioned that in order

for an atlas to be helpful for different medical imaging applications such as segmentation

of a specific structure in the brain, they need the atlas image and the anatomical structures

therein to have sufficient contrast. For example, they expect to see a crisp boundary (in

terms of the average combined image intensities) between gray and white matter in the

brain. Therefore, the sharpness of the boundaries of the anatomical structures in the

atlas image is another criterion examined qualitatively to evaluate the alignment of the

ensemble. These qualitative evaluations are often performed on a subset of the ensemble

of images (in the atlas coordinate system), because visualizing the entire ensemble results

in too much clutter and blurriness. Figure 3.3 shows a snapshot of a slice of the brain atlas

image used as a common (atlas) coordinate system to register individual label maps from

the ensemble.



26

(a) Atlas image slice (b) An MRI image slice

Figure 3.3. Illustration of the atlas image slice constructed using AtlasWerks [97]. The
anatomical structures in the atlas image usually have lower contrast and fuzzier edges as
compared to an original MRI image. This fuzziness results from performing averaging
while constructing the atlas.

3.2 Our Visualization Pipeline
In this section, we discuss the visualization pipeline of our prototype system. We

first start with a brief summary of various ensemble visualization strategies that we have

considered and incorporated into our prototype system. We then provide an overview of

the pipeline and our design choices to mitigate the challenge of visualizing and rendering

an ensemble of 3D isosurfaces.

3.2.1 Ensemble Visualization Overview

Visualization is often data-driven, and therefore uncertainty visualization schemes are

typically designed to deal with the type of data being visualized. For scientific data, users

are often interested in visualizing derived features of their data, such as transition regions

(or edges), critical points, or isosurfaces (of volumetric data) and the uncertainty associated

with such feature sets. A thorough review of the rich literature on uncertainty visualization

is beyond the scope of the current chapter. However, interested readers can consult [18, 85]

for further details on recent advancements on this topic. The focus here is visualization of

isosurfaces in the context of uncertain scalar fields, which has been studied somewhat

extensively. Most relevant to the application under study (i.e., atlas construction) is the

visualization of uncertain isosurface extracted from an ensemble of scalar fields.
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Here we provide a brief summary of three classes of popular techniques for visual-

ization of uncertain isosurfaces that are extracted from ensembles of scalar fields. These

techniques were chosen to represent the range of strategies for representing an ensemble

(as discussed in Chapter 1), namely, 1) enumeration of all ensemble members; 2) visual-

ization of the statistical summaries induced from parametric uncertainty modeling; and 3)

descriptive nonparametric summaries:

1. Enumeration. A widely used approach for ensemble visualization is the direct vi-

sualization of all ensemble members. Direct visualization of ensembles has gained

significant interest in applications such as weather forecasting and hurricane pre-

diction [23]. Ensemble-vis [86] is an example of the data analysis tools designed to

visualize ensemble data. Ensemble-vis uses multiple views of fields of interest to

enhance the visual analysis of ensembles. We incorporate direct visualization of 3D

ensemble members (see second column in Figure 3.4) by rendering the curves formed

by the region of intersection of the co-dimension one isosurface of each ensemble

member with a cut plane. Note that as long as the isosurface embedded in 3D is

closed, closed curves will be generated when the isosurface is sliced for visualization

purposes. We refer to this visualization as a spaghetti plot. In order to facilitate

the interpretation of the individual ensemble members, each of these curves has

been rendered with distinct and random colors. There are a variety of options for

rendering the enumeration of all 3D surfaces, including transparency, but clutter

is a significant challenge [23]. For this work, we present the surfaces of the inner-

and outermost volumetric bands formed by all ensemble members. User studies

have suggested the effectiveness of direct ensemble visualization techniques [23].

However, direct visualization of the ensemble does not provide any quantitative

information about the data uncertainty, and relies solely on the user for interpreting

data.

2. Parametric probabilistic summaries. Many uncertainty visualization schemes use prob-

abilistic modeling to convey quantitative information regarding data uncertainty. Such

techniques often rely on a certain kind of statistical model such as multivariate nor-

mal distributions. As a representative of such techniques, we have chosen to consider
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(a) 3D Contour Boxplot (b) Spaghetti Plot

(c) 3D Average Intensity Image

Figure 3.4. Three visualizations of ventricles from an ensemble containing 34 images
from the ADNI data set transformed to a common atlas space. Left: the contour boxplot
visualization in 3D, with 50% volumetric band dark purple, 100% band volume in light
purple, median in yellow, and outliers in red (on the cutting plane). Middle: direct
visualization of the ensemble members (spaghetti plot). Right: 3D average intensity image.

the concept of level-crossing probabilities (LCP) [82]. For visualization, we imple-

mented the 3D probabilistic marching cubes algorithms (proposed based on LCP) [84]

as part of our initial visualization system. Probabilistic marching cubes rely on ap-

proximating and visualizing the probability map of the presence of the isosurface at

each voxel location. However, the use of parametric modeling can limit the capability

of this techniques. Approximating the underlying distribution giving rise to the

ensemble and presenting the user with only aggregated quantities of the inferred

distribution can be misleading in some applications. For instance, this approach can

often hide or distort structures that are readily apparent in the ensemble.
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3. Nonparametric descriptive summaries. An alternative strategy that relies on neither

enumeration nor parametric modeling of the underlying distribution is to form de-

scriptive statistics of an ensemble. Descriptive statistics offer an ensemble visualiza-

tion paradigm for understanding or interpreting uncertainty from the structure of

an ensemble. The notion of centrality is a natural approach to understanding the

structure of an ensemble. Because an ensemble is an empirical description of its

distribution, some instances from an ensemble are more central to the distribution,

and therefore more typical within the distribution. The notion of data depth provides a

formalism for characterizing how central a sample is within an ensemble. Data depth

provides a natural generalization of rank statistics to multivariate data [66]. The

univariate boxplot (or whisker plot) is a conventional approach to visualize order

statistics. Boxplot visualizations provide a visual representation of the main features

of an ensemble, such as the most representative member (i.e., the median), quartile

intervals, and potential outliers. The notation of data depth has been generalized

for ensembles of isocontours [115]. In [115], the authors propose contour boxplot as a

visualization technique to summarize robust and descriptive statistics of ensembles

of 2D isocontours [115]. In our system, we algorithmically extend and implement

the contour boxplot analysis for isosurfaces embedded in 3D (see Figure 3.4, first col-

umn) as an example of visualization techniques based on nonparametric descriptive

statistical summaries of an ensemble.

In order to analyze the alignment, or lack thereof, of shapes in an ensemble, we incor-

porated representative members of the aforementioned ensemble visualization technique

categories as part of our prototype system.

3.2.2 Ensemble Visualization Prototype System

At a high level, our prototype system consists of two stages (see Figure 3.5):

1. Data Preprocessing. When visualizing isosurfaces of a binary 3D segmented image, it

is often necessary to perform smoothing to reduce aliasing artifacts and facilitate

3D rendering/shading. We perform this smoothing in a two-step preprocessing

stage. In the first step, the binary partitioned image is antialiased using an iterative

relaxation process described in [114]. Next, a very small amount of mesh smoothing
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Figure 3.5. Overview of prototype system designed for shape alignment evaluation using
ensemble visualization.

is performed on the isosurface mesh generated from the antialiased binary image. All

visualization preprocessing operations occur on the 3D volume (and corresponding

co-dimension one isosurfaces) prior to cut-plane extraction.

2. Visualization. This stage includes some visualization strategies to facilitate the per-

ception and navigation of the rendered 3D objects. In order to improve the per-

ception of shape in our application, we include interactivity with renderings of 3D

objects as part of the visualization system. In our settings, the user is able to rotate the

object displayed on the screen using the standard trackball interaction mechanism.

The system allows the user to select cutting planes, which clip a portion of the

volume displayed on the screen, to render cross-section views of surfaces embed-

ded in 3D. The user can also interactively orient and translate the cutting plane.

Additionally, the system provides the flexibility of having one or multiple cutting

planes and interactively adjusting their position and orientation. The interface of the

system allows the user to interactively select various features of interest for rendering

in order to focus on any particular feature of interest. For example, the user can select

specific ensemble members to be rendered individually.

In the case of 3D contour boxplots, the analysis is performed on the 3D binary seg-

mented volumetric data (in the preprocessing stage), and the results are rendered interac-

tively. While the analysis is performed on the volumetric data leading to volumetric 50-
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and 100% bands, we render the visualization of the statistical summaries only on chosen

cut planes to deal with the issue of occlusion. For instance, in the absence of a cut plane,

the 100% band entirely occludes the median shape as well as the 50% band.

3.3 Evaluation
In this section, we demonstrate the efficacy of using ensemble visualization techniques

to study the alignment of MRI brain images during brain atlas construction by gathering

feedback as part of an expert evaluation study of the proposed prototype system. We

refer to our expert evaluators as participants. All the visualizations presented were part

of the prototype system introduced in Section 3.2. We described the prototype system to

the participants after a walk-through presentation of the different ensemble visualization

techniques. The participants were able to interact with the system and switch through

the various visualization methods as explained in Section 3.2. For our study, we solicited

their feedback on the visualization of the two anatomical structure presented below: the

left ventricle and the cortical surface. We paid particular attention to the participants’

comments concerning the suitability of ensemble visualization for this application. A

summary of our interactions with the participants follows. We start by describing three

examples where useful insights into the atlas data were gained by the participants when

interacting with the system.

In our first example, we focus on analyzing the variability within an ensemble of different

regions of brain ventricles transformed to a common atlas space using the unbiased, dif-

feomorphic approach in [50]. Ensemble visualization not only helps general users identify

regions that are either well or poorly aligned, but also provides insight regarding whether

the variability is due to differences in shape, position, or both.

Figure 3.4 shows the three approaches to visualizing the aligned ventricles for an en-

semble of 34 brains. From the contour boxplot in Figure 3.4a, one can immediately identify

regions of high variability such as Region A, which is highlighted in the figure. In this

specific region, most of the variability is outside the 50% band, which means that less than

half the ensemble members contributed to this variability. Looking at the spaghetti plot

in Figure 3.4b, we see there are, in fact, only two ensemble members that significantly

differ from the other members in Region A. These results show that the variability is due
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to overall position as well as shape in this region. In Region B (Figure 3.4a), we notice

that the variability can be attributed to significantly different shapes of the isocontours,

and that these shapes would not easily be aligned through the smooth transformations

in this atlas, and may require parameter tuning to achieve alignment. By observing Re-

gion C (Figures 3.4a–b), we see that the variability comes mostly from the positions of

the isocontours. Results in Region C also show that no particular ensemble member is

disproportionately responsible for the variability—the width of the 50% band is nearly that

of the 100% band in this region, and outliers align well with the median contour. Finally,

Region D (Figure 3.4a) demonstrates an area of very low variability across the ensemble

and provides an example of good alignment of all the ventricles, which is confirmed by

the spaghetti plot in Figure 3.4b. Figure 3.4c shows a volume-rendered 3D version of the

average intensity image for comparison. The average intensity image is an essential part

of the atlas, but it does not provide the same insights for debugging the atlas in a detailed

way.

We also showed the participants’ volume renderings of level-crossing probability val-

ues, as suggested in [84]. The participants noted that the level-crossing probability visu-

alization shows almost the same information as the average intensity image (Figure 3.4c),

which is already used extensively during atlas construction. They did not feel that further

exploration of this form of ensemble uncertainty visualization for evaluating atlases would

be useful, and therefore we did not include comprehensive results from level-crossing

probability renderings in this study.

The second example was chosen to evaluate whether ensemble visualization can also

provide insight into the overall variability between the members of an ensemble of aligned

shapes. An understanding of the overall variability (as opposed to local variability) is

useful not only to understand how well a particular atlas was constructed, but also to

compare different atlases. For this example, we have constructed three atlases, each with

an ensemble of size 30. The first atlas was constructed with a high value of regularization

(transformation smoothing), λ = 1.0; a second atlas was constructed for the same ensemble

while using a low regularization value, λ = 1
9 ; and a third atlas was constructed from a

different ensemble (i.e., subject group) with the regularization/smoothing at λ = 1
9 .

Figure 3.6 shows slices of intensity atlases and contour boxplot visualizations for each
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(a) (b) (c)

(d) (e) (f)

Figure 3.6. Brain atlases with different parameters and subject groups. Top: slices of
average intensity atlases for ensembles of 30 brain images. Bottom: associated contour
boxplot visualizations for cortical surfaces. Left: atlas constructed with high regularization
of deformation. Middle: atlas constructed with low regularization. Right: atlas with low
regularization using a different ensemble than in the other columns.

of the three cases (columns from left to right). The first row presents a slice of the intensity

image for each atlas, and the second row demonstrates the 3D contour boxplot visualiza-

tion of the cortical surfaces for atlases corresponding to the intensity image above.

Using a high value for the regularization parameter enforces high smoothness of the

deformation fields, which in turn makes it harder to arrive at a set of deformations that

would perfectly align all the individual images. The lack of alignment leads to high

variability between isosurfaces in the ensemble. Such high variability is easily visible by

looking at Region E in Figure 3.6d where the 50 and 100% bands are wider than in the cor-

responding region of the atlas with low regularization (Figure 3.6, middle column). Better

image alignment when the atlas is constructed with low regularization is also evident in

Region E by comparing contours of the median and outlier shapes rendered on the cut
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plane in Figures 3.6c and d. We see that the median and the outlier shapes are poorly

aligned for images aligned with an atlas constructed with high regularization (Figures 3.6,

first column), but the alignment is much better when the atlas is constructed with low

regularization.

Finally, the third atlas (right column of Figure 3.6) in this example demonstrates the

effect of inherent variability between the ensemble members (i.e., brain images) on the

atlas construction process. We see that in many regions of Figure 3.6f, for instance in

Region F, the 100% band is significantly wider than the 50% band, indicating a significant

spread in the distribution of surfaces, which is different from the variability seen in the

corresponding region in Figure 3.6e, where both bands nearly overlap. Furthermore, in

the third atlas we see that the outlier is well aligned with the median in some regions (see

Region G), but poorly aligned in others (see Region H). This example demonstrates that

shape/surface variability in atlases depends on, in addition to parameters of construction,

the inherent variability of shapes in the ensemble. Thus, the contour boxplot, as part of the

atlas construction process, can help users tease apart these different aspects of variability.

In addition to aiding in the understanding of the general alignment of shapes in an

ensemble, the contour boxplot is also useful in conveying to the general user how well

a particular shape is aligned with respect to the rest of the ensemble. Such knowledge

is particularly useful in the case of outlier shapes. Atlas construction is often an iterative

process, and identification of outlier images that do not align sufficiently with the atlas is

an important intermediate step in the process. In the contour boxplot shown in Figure 3.7c,

we see a single outlier shape and its alignment relative to the ensemble. In comparing this

visualization with an average intensity image of the left ventricle region Figure 3.7a, we

see that an anomaly in Region I (Figure3.7c) shows as a barely perceivable increase in

intensity in Figure 3.7a. A similar observation can be made from the intensity image slice

of the outlier member shown in Figure 3.7b. However, the anomaly shows up clearly in

the contour boxplot, and because it is outside the 100% band, we know that the degree of

misalignment of this shape is rare within the ensemble of ventricles. Region I also demon-

strates the challenges of assessing geometry in 3D, because distances between surfaces

can be exaggerated when viewing them on a single cut. However, interacting with the

visualization by moving and rotating the cut plane can help verify the 3D shapes of rank
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(a) (b)

(c)

Figure 3.7. Visualizations of left ventricles. Crosses mark the correspondence between the
images. (a) Left ventricle slice from an intensity image of the atlas. (b) Left ventricle slice of
an ensemble member identified as an outlier by data depth analysis. (c) Contour boxplot
visualization of an ensemble of 34 ventricles in atlas space.

statistics and the surface geometries and separation distances.

In some cases, aligned shapes can differ in size from the rest of the ensemble. For

instance, Figure 3.7c shows that the outlier ventricle is noticeably smaller than the median

ventricle in Regions J and K, which is not the case in the Region L. This observation is not

possible in the corresponding intensity images. These size differences occur for several

reasons. In this example, for instance, the outlier ventricle may have been different and

irregular to begin with. Another reason could be mislabeling of the ventricular region dur-

ing the segmentation process to generate the labels for that image. Finally, the process of

generating deformations during the atlas construction might fail, leading to irregularities

for an ensemble member when mapped onto the atlas space. The contour boxplot can

provide information that can help the user decide whether or not any particular outliers

need to be removed from the ensemble or if further investigation is necessary to identify

causes of possible misalignment.

At the conclusion of our study, we asked the participants to comment about their

experience with the system, including the applicability of such a system if integrated
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into an atlas construction software. They were also asked to compare the ensemble vi-

sualizations to the evaluation techniques they currently use. The two main techniques

currently used for atlas evaluation are inspecting unaligned structures (when mapped to

atlas space) or analyzing the deformations, quantifying the amount of change necessary to

bring individual ensemble members into alignment. Here we summarize the observations

of the participants in this study:

• The participants pointed out that being able to visualize the extent of the variation

among the ensemble of aligned shapes in terms of quantitative percentile informa-

tion using the contour boxplot visualization was helpful for comparing various atlas

construction schemes (or comparing atlases that were constructed from different

ensembles or parameter settings). They also mentioned that the contour boxplot

has the potential to help reduce the time needed for the user of the atlas construction

software to gain insights regarding the quality of the atlas.

• The participants noted that state-of-the-art techniques for evaluation/visualization

of atlases provided limited information about the variability that remained within an

ensemble after transforming it to atlas space. Deformation and image match energies

(quantities that are optimized during registration of images in atlas construction)

are not able to provide insight into the geometric discrepancies that are crucial to

understanding atlas quality.

• The participants noted that the capability of the contour boxplot to effectively locate

and characterize different types of variability was valuable in atlas construction.

• The participants pointed out that an automated and statistically robust way of iden-

tifying and visualizing outliers in an ensemble can play a major role in construction

of an atlas.

• The spaghetti plot was found to be helpful to view the contours of specific ensemble

members other than the median or outliers.

• The participants noted that both the contour boxplot and the spaghetti plot were able

to convey important details pertaining to the variability in an ensemble, whereas the

average intensities had limited utility because of their general fuzziness.
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We conclude this section by summarizing our findings from this study and the in-

terview process. The goal of the application described in this chapter is to evaluate the

alignment of 3D shapes, in particular the alignment of 3D MRI images that have been

transformed to a common atlas space, using various ensemble visualization methods.

It is observed that the ensemble visualization methods are helpful in characterizing the

alignment of shapes, and furthermore, provide insights that are useful in understanding

the variability in alignment. An understanding of the type or location of the variability can

be helpful in tuning parameters used in atlas construction and/or removal of outliers to

achieve better alignment. We observed that the contour boxplot emerged as a clear favorite

of our participants. One of the salient features of the contour boxplot that makes it distinct

from the other ensemble visualization approaches is its ability to convey an aggregated

result from the analysis of all regions of shapes in the ensemble on any arbitrary cut plane.

For example, visualizing a slice of the intensity image, or contours on a cut plane using

the spaghetti plot, conveys the variability for only the region intersecting the cut plane,

whereas a contour boxplot visualization using the same cut plane also provides informa-

tion about the median and outlier contours that are calculated from a global analysis of

contours. The contour boxplot, however, has a drawback in that it does not give the

user much information about specific ensemble members, other than the median or the

outliers. For such cases, the spaghetti plot with interactivity that allows highlighting of

specific ensemble members can augment the contour boxplot by providing more detail

if the general user wishes to focus on very specific anatomical areas or members of the

ensemble.

3.4 Conclusions
In this chapter, we introduce a new approach to study alignment of shapes. We demon-

strate the efficacy of using the 3D contour boxplot ensemble visualization technique to

analyze shape alignment and variability in atlas construction and analysis as a real-world

application using a prototype system. The system was evaluated by medical imaging

experts and researchers working with medical image atlases in an expert evaluation study

that was conducted to examine the applicability of ensemble visualization for studying

shape alignment and variability. We find that providing the user with both quantitative
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and qualitative visualization of variability can yield better understanding of the main

features of the ensemble and the atlas construction quality.

Future work for our system in the context of the current application includes refin-

ing the system in order to address the suggestions provided by the participants, such

as viewing the specific structures in the context of the whole brain and more interaction

options. Furthermore, ensemble visualization approaches discussed in this chapter can

be integrated into an atlas construction package in order to provide the users the capabil-

ity of interactively inspecting the shape alignments and the variability among ensemble

members after atlas construction. Motivated by the feedback from the participants, a more

comprehensive study is required to examine the applicability of ensemble visualization to

compare different atlas construction schemes.

In addition, studying shape variability has applications in various branches of science.

In molecular dynamics, researchers study different types of molecular structures and the

shapes of their potential fields in solutions (which vary stochastically) in order to un-

derstand, for instance, their biochemical properties [123]. Scientists are also interested

in the evolution of the shape of molecules. For example, the surfaces of 3D molecular

chains are of significant interest for comparison of various types of protein structures [123].

In Figure 3.8a, the contour boxplot visualization of the surface of an ensemble of simu-

lated HIV molecules is shown. The ensemble members underwent a Procrustes alignment

(translation, rotation, scale) using the positions of the underlying molecules. The potential

fields that form these contours are inherently smooth, and thus there was no need for

preprocessing of these volume data.

Another application where the study of shape variability and alignment is of significant

interest is fluid mechanics. In fluid mechanics, when developing models of vortex behav-

ior, scientists oftentimes study the variability of the shape of vortex structures among dif-

ferent simulations (e.g., using slightly different parameter settings or boundary conditions)

to confirm that their observations are repeatable [117], rather than a numerical artifact of

a particular simulation. The center of an eddy corresponds to low pressure values in the

flow, and hence studying the pressure field of a fluid flow can help detect the position of

the eddies and regions of high vortices. We have used the 2D incompressible Navier-Stokes

solver as part of the open-source package Nektar++ [1] to generate an ensemble of 28 fluid
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(a) (b)

Figure 3.8. Contour boxplot visualizations for simulated ensemble data sets. (a) Contour
boxplot visualization for an ensemble of size 100 simulated HIV protein. Here, we see the
median contour in yellow and the outlier contours in red. (b) Contour boxplot visualiza-
tion of the isosurface of the pressure field of a fluid flow. The pressure is considered as
a function of depth to generate a 3D pressure volume. The median contour is drawn in
yellow and the outlier contours are drawn in red.

flow simulation runs. These simulations have been designed for a steady fluid flowing

past a cylindrical obstacle. For each of the ensemble members, we randomly perturbed

the initial conditions such as inlet velocity and Reynolds number. For this example, the

pressure dependence in the third dimension was computed analytically. The contour

boxplot visualization of the isosurfaces of the pressure volume is shown in Figure 3.8b.

Many possible applications beyond the ones showcased could benefit from the contour

boxplot summary and visualization technique.



CHAPTER 4

PATH BOXPLOTS FOR CHARACTERIZING

UNCERTAINTY IN PATH ENSEMBLES ON

A GRAPH

Portions of this chapter have been reproduced with permission from Taylor and Fran-

cis Group and is based on material published in JCGS, Path Boxplots for Characterizing

Uncertainty in Path Ensembles on a Graph, M. Raj, M. Mirzargar, R. Ricci, R.M. Kirby, R.

Whitaker, vol. 9, 2017, pp. 243-252 [90].

4.1 Introduction
Making sense of sets of information defined over graphs can often be a challenging

because graphs are typically used to represent abstract data that may not be easily rep-

resentable in a flat, or Euclidean, space. Here, we define a graph G(V, E, W) as a set of

vertices (or nodes) V, a set of edges E ⊆ V × V, and a set of edge weights, W : E 7→ R+,

assigned to each edge. In this chapter, we describe a method to gain insight into a particu-

lar type of data represented on graphs, namely collections or ensembles of paths on graphs,

henceforth referred to as path ensembles. We define a path (a special type of subgraph) as

a sequence of vertices p = (vi : 1 ≤ i ≤ m), where vi ∈ V and each consecutive pair of

vertices in the sequence have an associated edge, (vi, vi+1) ∈ E ∀ i = {1, . . . , m− 1}. We

define a path ensemble as a collection of paths on a particular graph.

Paths on a graph are natural structures used to describe and analyze data in a range

of applications. For instance, in transportation urban planners study ensembles of paths

of commuters (e.g., from recorded GPS data) to identify important travel corridors to plan

new routes [34]. Analysis is performed on a graph whose vertices are usually transition

points (road intersections, airports). These vertices have a geographical location and an

abstract, logical meaning. The edges in the graph represent direct transportation connec-

tions between vertices (segments of roads, routes of airplanes), and they often encode, as
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weights, information about transit time or cost. A path on this graph is an abstraction of a

commuter’s path.

In computer networks, system administrators try to detect anomalies or attacks by

keeping track of the paths taken by the network traffic over a period of time [19]. Analysis

is performed on a graph whose vertices are Internet subdomains known as autonomous

systems (ASes), and edges represent a direct data link between ASes, which can encode, as

weights, transfer capacity. A path on this AS graph represents the path of a packet on the

Internet.

In molecular dynamics where scientists are interested in studying the protein folding

process, various possible configurations (also known as states) of a specific protein struc-

ture are known but the sequence of discrete intermediate states in the process of protein

folding is not. Analysis is performed on a configuration graph whose vertices represent

the possible protein configurations, and weights on edges denote the respective transi-

tion probabilities between the associated pair of configurations. In this case, a path is a

sequence of potential discrete intermediate states and may be identified by carrying out

simulations that incorporate stochastic transitions. These simulations result in an ensem-

ble of possible paths for a folding process on the graph associated with a molecule [8]. In

path analysis [119], graphs are used to model dependencies (encoded as edges) among a

set of variables (encoded as vertices). Direct and indirect dependencies between variables

can be represented as edges and paths, respectively, in a model (graph).

Recently, researchers have begun considering the problem of systematically analyzing

and visualizing path ensembles. One of the first challenges is how to summarize or aggre-

gate the information in path ensembles. One approach of aggregation relies on specialized

heuristics that often incorporate statistics of low-dimensional descriptors of paths. In road

networks, the average travel time between two nodes becomes a salient feature [46]. In the

analysis of computer networks, one might quantify the amount of traffic passing through

a node in a computer network [19]. In molecular dynamics, the product of transition

probabilities along folding paths is considered [8].

Another aggregation approach proposed by researchers is to compare paths directly,

rather than using low-dimensional descriptors. Aggregate operations on path ensembles

often rely on a definition of the distance between two paths such as Hausdorff [113] or
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Fréchet [32] metrics, which are, in turn, based on distances between individual vertices.

From these distances one can generalize the classical notions of statistical summaries such

as median and mean [2, 33], as well as clustering [54]. Such aggregate characteristics for a

path ensemble can help in understanding the structure of the ensemble.

To fully understand the structure of path ensembles by evaluating relationships be-

tween paths, applications need to consider not only distances between vertices in a path,

but also patterns or differences in the (global) structure or shapes of paths. For instance,

some paths may deviate from a central or most representative path, but in either typical or

atypical ways. State-of-the-art aggregation techniques for path ensembles typically ignore

the relationships that may exist between patterns of vertices in a path.

A growing body of research in analysis methods based on the notion of data depth

robustly accounts for nonlocal relationships (correlation) among variables in multidimen-

sional data, in essence capturing their global structure faithfully. Data depth is a method

from descriptive statistics that provides a way to quantify centrality of multivariate points

in an ensemble and derive a center-outward ordering, with few assumptions about the

underlying distribution. Data depth has been shown to generalize to multidimensional

data, and data-depth formulations, which account for relationships among variables, have

been developed for specialized data types such as functions [66, 103], isocontours [115],

and curves [67, 73]. Motivated by formulations of data depth for ensembles of multidi-

mensional data, we propose a generalization of data depth for path ensembles on graphs,

which we call path band depth. At a high level, our generalization comprises the following

two parts, which it shares with earlier formulations for functions and curves: 1) a definition

of band formed by a set of ensemble members; and 2) a definition of path band depth. We

also propose a visualization strategy for path ensembles, which we call path boxplots, based

on the order statistics induced by the depth assigned to the paths.

This chapter is organized as follows. In Section 2, we briefly discuss distance metrics

that are currently used to analyze path ensembles, followed by the notion of data depth

and band depth, a type of data depth, and its existing formulations to specialized data types

such as functions and curves. In Section 3, we develop our generalization of band depth

for paths. In Section 4, we develop our proposed path boxplot visualization strategy.

In Section 5, we compare our generalization to distance-metric-based alternatives using
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synthetic data and present two real applications: transportation and computer networks.

4.2 Background and Related Work
We begin with a brief discussion of current methods for analysis of path ensembles. In

order to select a representative path, Evans et al. [33, 34] have proposed a generalization

of Hausdorff distance for sets of vertices on graphs, which they call network Hausdorff

distance (NHD). The classical Hausdorff distance is a measure of dissimilarity between

sets and is defined as the maximum of distances from a set of points to their respective

nearest neighbor in another set. For paths, we let pa and pb denote the sets of vertices for

two paths within a weighted graph, and then the network Hausdorff distance is defined

as [34]

dH(pa, pb) = max
va∈pa

min
vb∈pb

dg(va, vb), (4.1)

where dg(va, vb) is the geodesic (or shortest path) distance between vertices va and vb. The

path minimizing the sum of distances from all other paths in an ensemble is the most

representative path, a natural generalization of the median.

Alternatively, Eiter and Mannila [32] use the discrete Fréchet distance (DFD) between

paths, as an approximation of the classical Fréchet distance. It relies on the set monotonic

orderings of the vertices (correspondences or parameterization between paths). The length

associated with a correspondence between two paths is defined as the maximum geodesic

distance between corresponding vertices, and the DFD distance is defined as the mini-

mum length over all possible correspondences. As with functions, point-based metrics

of geometric distances, such as NHD and DFD, generally do not account for the overall,

global structure of objects (paths in this case). Therefore, although such metric account

for worst-case, vertex distances, they do not capture what is generally referred to as shape

differences in the geometric setting.

This chapter introduces a method for exploratory analysis or visualization of path en-

sembles on graph, with consideration of their global structure. The proposed approach

is motivated by the univariate boxplot (see Figure 4.1a) introduced by Tukey [108] as an

exploratory data analysis tool, based on data depth to summarize the descriptive statis-

tical summaries of an ensemble, based on rank statistics, such as median, first, and third

quartile; nonoutlying minimum and maximum values; and identified outliers.
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(a) (b) (c)

Figure 4.1. Band and boxplot for univariate points and functions. (a) A classic boxplot
for univariate data. (b) A functional boxplot for an ensemble of functions. The median
function is drawn in yellow, outlier functions in red. The 50% and the 100% data envelope
are shown in dark and light purple, respectively. (c) An ensemble of five functions and a
sample band formed by three member functions ( f2, f3 and f4) from the ensemble.

A widely adopted strategy for evaluating the depth of a data sample with respect

to a data ensemble is band depth. Band depth is a formulation of data depth that relies

on the probability that a data point lies between a random selection of other points from

the distribution. For multivariate data, the simplicial depth of a n-dimensional point is

the probability of a data point lying in the simplex formed by n + 1 (distinct) randomly

chosen points from the distribution [62]. Lopez-Pintado and Romo propose a concept of

band depth for functions [66], in a way that goes beyond point-wise analysis of functions

and provides an analysis that accounts for nonlocal correlations that span the function

domain. Sun and Genton [103] use this data ordering to construct functional boxplots, a

generalization of the conventional whisker plot for visualization of ensembles of functions

(see Figure 4.1b). Several authors have proposed extensions of functional band depth to

curves in n dimensions and associated boxplots [67, 73].

The proposed method generalizes the method of function/curve band depth for paths,

and therefore we give a brief overview of methodology for band depth on functions/curves

[66, 67, 73]. First, we consider an ensemble of n functions:

E = { f1(t), f2(t), · · · , fn(t)} ⊂ F, fi ∈ F, (4.2)

where F = { f | f : R 7→ R} denotes the space of continuous functions on a compact

interval. A function g falls within the band B[ · ] formed by a set of j functions if it lies

within their min/max envelope (see Figure 4.1c). That is,
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g ⊂ B
[
{ fi1 , · · · , fij}

]
iff

min
(

fi1(t), · · ·, fij(t)
)
≤ g(t) ≤ max

(
fi1(t), · · · , fij(t)

)
∀t.

(4.3)

Note that the band associated with a random set of functions is the min/max envelope,

and the inclusion in the band forms a binary test that provides evidence of centrality—not

to be confused with other statistical summaries, such as confidence interval or variance on

functions.

The band depth of each ensemble member, g, is defined as the probability of its inclu-

sion within the band formed by a random selection of j other functions from the ensemble:

BDj (g) = Prob
(

g ⊂ B
[
{fi1 , · · · , fij}

])
. (4.4)

For computation, the probability in (4.4) is expressed as the expectation of the characteristic

function on g ⊂ B[{ fi1 , · · · , fij}], and approximated by a sample mean using all choices of

j samples from the ensemble (or a random subset, if the ensemble is large):

Prob
(

g ⊂ B
[
{ fi1 , · · · , fij}

])
= E

[
χ
(

g ⊂ B
[
{ fi1 , · · · , fij}

]) ]
≈ 1

(n
j)

∑
{ fi1 ,... fij}⊂E

χ
(

g ⊂ B
[
{ fi1 , · · · , fij)}

])
,

(4.5)

where χ(·) denotes the characteristic function.

Several practical issues are worth noting. The choice of the number of samples j used

to form the band is not specified by the formulation, and may depend on the nature of

the data (e.g., variability, number of samples). For larger ensembles, the total number of

j-sized subsets may be too large, in which case random subsets may be chosen. Alter-

natively, the number of j-sized subsets of E may not be large enough to produce reliable

probability estimates and properly order the samples. To address this issue, [66] proposed

modified functional band depth, which replaces the characteristic function χ in (4.5) with the

measure over the domain of f ∈ F for which the pointwise inclusion within the band

holds. This relaxation can undermine the shape discrimination properties of the depth

formulation. Alternatively, Whitaker et al. [115] propose an ε-modified band depth (for

sets and contours) that relaxes χ to allow a certain amount (e.g., percentage) of the domain

to fall outside of the band.
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4.3 Band Depth for Paths on Graphs
In this chapter we propose a formulation of band depth for vertices of a graph, and

extend that formulation to band depth for paths on graphs. The strategy for building

a band for paths mirrors the development of the band depth for curves (i.e., functions

c : R 7→ Rn) [67, 73], which is to establish a definition of a band for points in the range of

the function in Rn and then apply that band definition for all points in the domain.

In Rn, the band formed by a set of j points has been formulated as the convex hull

of X = {x1, . . . , xj} where xi ∈ Rn ∀i ∈ {1, . . . , j}[62]. The convex hull of X , H[X ] is

the smallest convex region that contains X . H[X ] is a simplex for j = n + 1 (and points

in general position), and H[X ] has measure zero for j ≤ n. For n = 1, the convex hull

is the subset of the real numbers bounded by the minimum and maximum of the points

in X . Lopez-Pintado et al. [66], as well as Mirzargar et al. [73], generalize the function-

band-depth formulation to curves, Cj(t) = {c1(t), . . . , cj(t)} where ci : R 7→ Rn, using the

parameterized set of convex hulls for points in Rn. That is B[Cj](t) = H[{c1(t), . . . , cj(t)}].

Here we use a similar generalization strategy for paths on graphs, namely a parameterized

convex hull on the vertices.

We define the length of a path p as the sum of weights along its edges, denoted ‖p‖, and

its cardinality |p| is the number of constituting vertices. A geodesic between two vertices

(u, v) is the path between them with the shortest length, and we denote this geodesic

distance as dg(u, v). Geodesic (shortest) paths are not necessarily unique in a graph. In

this chapter, to clarify the discussion, we will generally assume there exists some consistent

way to decide among multiple geodesics (in our implementation we use the first geodesic

found by Dijkstra’s algorithm), and the theory and formulation can be extended to the

possibility of multiple geodesics.

We begin with a definition of the band formed by vertices on a graph. Let us define

subsets of vertices of size j as follows: Sj = {V ⊂ P(V) : |V | = j} where P(V) is the

power set of V. A vertex v is said to lie in the band formed by Vj ∈ Sj if and only if it lies in

the convex hull [81] of Vj on G. There are several formulations of convex hulls of a subset of

vertices Vj on G; here we propose to use the geodesic-convex hull on G, because of its natural

relationship to the simplex and convex hull band depth in Rn. The geodesic-convex set

of vertices on a graph is a set of vertices that is closed under geodesic paths (all geodesic



47

paths between all vertices in the set are contained in the set). The convex hull of a set Vj,

referred to as a j−simplex, is the smallest geodesic-convex set that contains Vj (and hence

can be thought of as the geodesic closure of Vj). We denote the convex hull of Vj by H[Vj].

In order to define band depth, we consider selecting j vertices independently from a

probability distribution over the vertex set V given by ProbV(v) where v ∈ V. From these

vertices we form Vj ∈ Sj. We can now ask if a vertex v falls inside the convex hull formed

by our random selection of vertices, where the probability of this event is the product of

the aforementioned vertex probabilities (by the independence assumption). Once in place,

we can define the graph-geodesic-hull band depth of a vertex with respect to the j-simplex to

be vBD(v) = Prob
(
v ∈ H[Vj]

)
, where Vj is a set of j independent samples taken from the

probability distribution we have defined for vertices.

If the graph is finite, the depth of a vertex can be computed in closed form. The band

depth of v can be expressed as the expected value of the characteristic function χ for v

falling within (or belonging to) a random j-simplex. That is,

vBD(v) = EVj∈Sj

[
χ
(
v ∈ H[Vj]

)]
= ∑

Vj∈Sj

χ
(
v ∈ H[Vj]

)
∏

vm∈Vk

ProbV(vm). (4.6)

This form also reveals that the proposed graph-geodesic-hull band depth is a more general

formulation of graph centrality from graph theory[36]. That is, the centrality of a vertex in a

graph has been quantified as the number of geodesic paths that pass through that vertex

[36], which corresponds to j = 2 and ProbV(v) = 1/|V| in (4.6). Thus, graph-geodesic-hull

band depth characterizes both the structure of the graph itself (and the centrality of points),

as well as the probability distribution on the vertices.

The extension from vertices to paths proceeds as in the case of curves, with some

additional technicalities. For this, we formulate a path on a graph as a mapping p : I 7→ V

over an index set I = [1, 2, . . . , m] onto the vertex set V, and we use the notation p(l) to

denote the vertex of path p that is mapped from index l ∈ I. The band formed by j paths

sharing a common index set is the parameterized set of j-simplex bands formed by their

corresponding vertices. Thus, we can index a set of j paths, Pj, such that Pj(l) ∈ Sj for all

l ∈ I.

The formulation for testing a path p against the band formed by a set of paths Pj that

are parameterized over I is



48

p ∈ B[Pj] iff p(l) ∈ H[{p1(l)), . . . , pj(l)}] ∀l ∈ I. (4.7)

The band depth of a path p is Prob(p ∈ B[Pj]) where Pj is a set of j, independently drawn

paths from the distribution Prob(P = p). Similar to other notions of band depth, the path

band depth can be computed as the expectation of the characteristic function of p being in

the band of a randomly chosen set from the distribution of paths:

pBD(p) = E
[
χ
(

p ∈ B(Pj))
)]

, (4.8)

where Pj again represents a set of j, independently drawn paths from the distribution

ProbP(p) over all possible paths P .

The expectation over the bands is approximated as a sample mean, from a random col-

lection of j-sized subsets of an ensemble. In some cases, small sample sizes may interfere

with the ability to estimate this expectation with sufficient accuracy to resolve differences

in samples with low band depth. Thus, modified versions can either use a measure over

an index set rather than a binary characteristic function [66] or relax the “for all” condition

in Equation 4.7 to allow a certain number of vertices to fall outside the simplex band, as

proposed in [115].

The proposed formulation for band depth on paths requires Pj and p to share a com-

mon index I, which is effectively a discrete parameterization. However, in most appli-

cations, paths are specified as sequences of vertices, without a corresponding index set.

Thus, one of the contributions of this work is a strategy for forming these common index

sets as part of the construction of bands for paths.

A common index set between a collection of paths establishes a correspondence between

vertices on a path such that for each vertex on each path there is a (nonempty) set of

corresponding vertexes on every other path. Because the paths may be of different lengths,

the correspondences are not unique. However, we propose that the mapping from the

index set to a path should be monotonic with respect to the sequence of the vertices on

the path (order of the vertices in paths is respected), and thus, the correspondences are

monotonic between every pair of paths.

The correspondence between a collection of paths is computed using an optimal match-

ing strategy, similar to what is used for string matching in computer science and sequence

alignment in biological protein analysis [79]. The intuition behind this method is to assign
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correspondences such that the correspondences are monotonic, and the overall sum of

geodesic lengths between corresponding vertices along the paths is minimized. We first

describe the method for finding correspondences between two paths. Given two paths pl

and pm, an optimal correspondence is established by a pair of monotonic mappings from a

common index set I to the paths, such that the distances between vertices are minimized.

Thus, we are trying to find two mappings that minimize(
∑
k∈I

dg (pl(k), pm(k))
)

, (4.9)

where pl(k) is the vertex on path pl that is mapped from the index k ∈ I, and dg(, ) denotes

the geodesic distance between two vertices. This formulation generalizes to collections of

paths (> 2) by minimizing the sums of all pairs of distances among corresponding vertices

in the collection of paths.

To find the correspondences among a set of paths, we use the classical method of dy-

namic programming (DP) on the matrix/tensor consisting of all possible correspondences—

e.g., the Needleman-Wunsch algorithm [20]. All pairwise distances are organized in a

tensor with an order that is the number of paths to be aligned. Thus, the number of

distances considered in the optimization is ∏
j+1
l=1 |pl |, which grows exponentially with the

number of paths forming the band (generally, the problem is NP-Hard [51]). There are

existing efficient, approximate algorithms for large numbers of paths [20], but that issue is

beyond the scope of this chapter. For the results presented here, we use j ≤ 3 and rely on

the basic (full enumeration of tensor) approach for optimization.

In Figure 4.2 we see a band formed by three paths— pa, pb and pc. Here, the elements

from common index I = [1, 2, 3] are mapped to vertices on the graph from each path.

Path px is completely contained within the band as all of its vertices are part of a j-simplex

formed by corresponding vertices that are mapped from the same element in I to pa, pb

and pc. Similarly, we observe that no vertex from py is contained in any j-simplex. Also,

two elements from I are mapped to a single vertex in pc as it is shorter than the other

paths. Once we are able to describe a band formed by a set of paths, we can generate order

statistics on an ensemble of paths by calculating the path band depth of each member

within the ensemble.

An ordering of the data based on path band depth readily yields a set of rank statistics.
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Figure 4.2. Band formed by three dashed paths on a complete graph whose edge weights
are equal to the Euclidean distance between vertices (only selected edges are drawn). The
green path is completely contained within the band according to definition in Equation 4.7,
whereas the red path falls completely outside the band. Solid blue edges constitute the
geodesics connecting vertices within graph simplices.

The median is the path with the highest probability of falling within a random band—(i.e.,

the deepest ensemble member). The 50% band consists of paths whose probabilities are in

upper half percentile of all probabilities. The 100% envelop is formed by excluding the

outliers. We define outliers (as in [103]): pBD(p) < pBD(pmedian)− α×
(

pBD(pmedian)−

pBD(p50%)
)

where p50% is the band depth value that splits the ensemble into equal parts,

and α = 1.5 is a typical value as found in the literature [103]. For the results shown in

this chapter, we used values of α in the range 2.4 to 3.7 in order to flag only the most

nonrepresentative paths as outliers. Furthermore, we used the modified formulation of

band depth [66], in order to resolve depth with sufficient accuracy to avoid ties.

By convention, data-depth formulations in flat spaces (e.g., simplex depth in Rn) are

considered desirable if they demonstrate a set of properties that are consistent with clas-

sical methods on certain classes of distributions. For instance, [124] have proposed affine

invariance, maximal depth around a point of symmetry, monotonic fall off with distance

from a central point, and zero depth for points at infinity. Although some of these proper-

ties have yet to be developed for general graph structures, in the appendix we prove the

asymptotic depth property for points at infinity for vertices and paths.
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4.4 Path Boxplot Visualization
Here we develop a visualization for the proposed analysis in a manner similar to what

has been proposed for functions, contours, and curves [40, 73, 103, 115]. The proposed

visualization approach is motivated by the classical whisker plot or boxplot, and relays a

display of the median, 50% band, 100% band, and outliers for graph-based path ensembles.

Figure 4.3a shows a synthetically generated path ensemble with each path drawn using a

random color. Figures 4.3c and 4.3d show two variations of our proposed visualization

described next.

We render the visualizations in a way that describes the rank statistics of the distribu-

tion or ensemble. We first establish the placement of vertices and edges either intrinsically

or via a layout algorithm [41]. Next, we use color and width/thickness on edges and

vertices to represent their rank. The paths in the 100% band are drawn thickest in light

(a) (b)

(c) (d)

Figure 4.3. Synthetic example 1. (a) A path ensemble with each path rendered with a
random color. (b) Path boxplot using rank statistics based on the sum of Fréchet distances.
(c) Path boxplot based on path band depth (visualization without vertex encoding). (d)
Path boxplot based on path band depth (visualization with vertex encoding).
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blue. The paths in the 50% band are drawn using a thinner dark blue stroke on top of the

thicker light blue band. This drawing of the thinner dark blue stroke over the thicker light

blue stroke is done to indicate that the path in the 50% band is contained within the 100%

band as well. Continuing this strategy, the median path is drawn using a thin yellow stroke

drawn over a thicker dark blue stroke, which in turn, is drawn over the thickest light blue

stroke. To signify that the outlier paths lie outside even the 100% envelop, they are drawn

using only a thin red stroke. Figure 4.3c shows a version of the path boxplot that uses the

described encoding for paths. A variation of this approach is seen in Figure 4.3d where the

vertices are also encoded, based on their position, in addition to the edges in the graph.

Vertices that are not part of the convex hull formed by any set of corresponding vertices

between paths are drawn as small gray circles. Vertices that are in the convex hulls formed

by paths in the 50% band are drawn using a light blue circle. Analogous to the encoding

for the paths, vertices in the convex hulls formed by paths in the 50% band are drawn

using a deep blue circle contained within a larger light blue circle, whereas vertices lying

on the median path are marked with an additional yellow circle drawn within the deep

blue circle, which is itself contained within a light blue circle.

The sections that follow demonstrate applications of the proposed method on synthetic

examples and data sets from applications in transportation and computer networks. We

use the visualization approach with vertex encoding (as seen Figure 4.3d and Figure 4.4c)

for all further path boxplot visualizations based on path band depth in this chapter except

when vertices on the graph are not rendered.

4.5 Results
We begin by showing results for two synthetically generated path ensembles on a

graph. For these ensembles, we show path boxplot visualizations generated using rank

statistics obtained by path band depth analysis, as well as, the Fréchet distance metric

analysis [32]. For these path ensembles, the results were identical upon replacing the

Fréchet metric with the Hausdorff metric, and therefore we show only one of these meth-

ods. When using a distance metric, we rank each path using the sum of its distances from

all the other paths in the ensemble. Hence the path that minimizes this sum is identified

as the median. Note that this is different from path band depth where the median path
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(a) (b)

(c)

Figure 4.4. Synthetic example 2. (a) A path ensemble with each path rendered with a
random color. (b) Path boxplot using order statistics based on the sum of Fréchet distances.
(c) Path boxplot based on path band depth.

has maximum depth. The underlying graph in both our examples is associated with a

regular, diagonal grid (constructed from including diagonals in a conventional, structured

quadrilateral grid).

For the first of these examples (see Figure 4.3), we generate an ensemble of 20 paths

by sampling with replacement from a set of straight paths (all vertices in the path have

the same ordinate) spanning the horizontal extent of the grid. The ordinate of each path

comes from a random variable associated with a normal distribution centered at the central

ordinate of the grid. We complete the ensemble by adding a simulated outlier in the form

of a zigzag path (see Figure 4.3a). In Figure 4.3b we see the path boxplot visualization

of Fréchet distance-based depth. Figures. 4.3c and 4.3d show two versions of the path

boxplot of the path band depth analysis. In this simple example we see that the result

from path band depth analysis is very similar to distance-metric-based analysis with both

approaches identifying the zigzag and peripheral paths as outliers.



54

We now present an example where distance-metric-based methods fail to detect the

general structure (median) and anomalous path (outlier) in an ensemble. Further, we see

that path band depth analysis is able to correctly make this determination by capturing the

nonlocal correlations in the path ensemble. Here, we produce an ensemble of 20 straight

paths spanning the grid’s horizontal extent, starting and ending at vertices with the same

ordinate (see Figure 4.4). In this case, however, each path is required to undergo flips when

traversing the flip regions as seen in Figure 4.4a. The vertex within each zone where the

flip occurs is chosen uniformly from among the vertices in each zone. We add a simulated

outlier to this ensemble in the form of a path with no flips (Figure 4.4a). In this case we see

that the distance-based metrics (Figure 4.4b) identify the simulated outlier as the median

(most representative) whereas the path band depth method (Figure 4.4c) selects one of the

randomly sampled paths as the median. The simulated outlier is closest to other paths

with regard to the distance metrics, but it is identified as an outlier by the path band depth

analysis.

4.5.1 Transportation Networks

We used publicly available road data from OpenStreetMaps (OSM) [43] for a randomly

chosen region in Los Angeles, California. Figure 4.5a shows a part of the road graph

overlaid on a map. We used expected travel time between the two adjacent vertices, obtained

by querying the open-source routing engine Gosmore, as the weight of each edge. Travel

time along a short road segments can be modeled using a normal distribution [45]. We

obtained an ensemble of 20 paths between two random vertices by repeatedly finding the

lowest cost path on the graph whose edge weights were picked, after each iteration, from

a normal distribution centered at the expected travel time for that edge.

For visualizing the paths, we used the geographical coordinates of the vertices on the

road graph for layout. A map, also based on OSM data, is provided in the background

for context in accordance with the common practice for viewing geographical routes (see

Figures 4.5a and 4.5b). In order to have the overlaid paths align with underlying roads

on the map and also be feasible with regard to traffic restrictions, we used the Gosmore

routing service to obtain the geographic coordinates of the spatial path drawn between ev-

ery pair of adjacent vertices along each path in our ensemble. Such alignment is necessary

for drawing road segments that are curved or where the direct connection between two
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(a)

(b)

Figure 4.5. Road network: (a) A section of the road graph overlaid on a map representing
actual spatial embedding of vertices and edges. (b) Path boxplot for an ensemble of paths
on a road network.

vertices is illegal according to local traffic rules.

A path boxplot of a path ensemble on a road graph is shown in Figure 4.5b. The most

representative path or the median path seen here can be useful when the requirement is to

select a particular path from a collection of paths on a road graph. For instance, a median

path would be a good choice of a path that affords quick access to a number of alternate

paths, which would be useful in situations involving- high traffic conditions or blockages.

The path boxplot would also find utility for planning bicycle corridors [33, 34].

4.5.2 Computer Networks (Autonomous Systems)

We used a subset of the AS graph as well as path ensembles of packets traveling

between ASes on that graph from a set of path snapshots seen from the Oregon Routeviews
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server. For clarity, we filtered out vertices in the graph that did not lie on a geodesic

between any pair of vertices in the path ensemble. Additionally, in the visualization we

included only a single geodesic between all pairs of vertices in the ensemble. For the graph

layout in 2D, we modified the force directed model in [38] by including an extra repulsion

between the vertices at the two endpoints, so that they were placed at nearly opposite

ends of the layout. Also, the charge/repulsion on each vertex was made proportional to

its degree for avoiding congestion near high-degree vertices.

We looked at several destinations that had significant variations in their paths through-

out the year. Visualizations of a few of these ensembles can be seen in Figure 4.6, Figure 4.7,

and Figure 4.8. Looking at a selection of these ensembles, there are some special cases

identified as outliers. Figure 4.6 shows an outlier where the outlying path is of the same

cardinality as the median path and does not contain any unique vertices or edges causing

it to be undetectable by common heuristic methods used to analyze network traffic. Other

cases include Figure 4.7 and Figure 4.8 , where the outlier path bypasses other paths

Figure 4.6. Outlier paths on AS graph: A class 1 outlier with no unique vertices/edges in
the outlier path.
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(a)

(b)

Figure 4.7. Outlier paths on AS graph: (a) Class 2 outlier: One unique edge, no unique
vertices in the outlier path. (b) Class 3 outlier: Outlier appears to be one hop, bypassing a
more normal route
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(a)

(b)

Figure 4.8. Outlier paths on AS graph: (a) Class 4 outlier: Outlier is two hops around a
more normal route; and (b) Class 5 outlier: Outlier takes several hops around the usual
path.
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through unique edges or vertices. Cases where they depart near one of the endpoints,

such as 4.8b, may be relatively straightforward for the operators of those edge networks to

detect, as their own routers will directly see the change in where traffic enters or exits their

networks. Cases such as Figure 4.7b, however, exhibit changes in networks that may not

be directly visible from the endpoints, and yet affect the overall behavior of traffic to/from

these endpoints. These are cases that can be particularly difficult to discover and diagnose;

a path boxplot can aid operators in assessing such cases.

4.6 Conclusion and Future Work
Assigning centrality-based ordering for an ensemble of paths is useful in many appli-

cations. Although robust band-depth-based methods for calculating order statistics have

been recently introduced for various kinds of ensembles on a continuous domain, they

cannot be employed in cases where the ensemble members are described on a graph.

We identify the challenges in extending this approach to paths on a graph and present

a solution in the form of a novel notion of depth denoted as path band depth. A visual-

ization scheme based on this new notion of depth called path boxplot is also introduced.

This chapter demonstrates the utility of the path boxplot for helping users understand

the overall structure of the ensemble using synthetic data as well as data from two real

application areas, path ensembles on autonomous system (AS) graphs and on road graphs.

Although a robust method for generating order statistics for path ensembles, the pro-

posed analysis is computationally intensive due to its combinatorial nature. The topology

of the underlying graph as well as the density of its edges also affects the computation

time by a constant factor. A practical approach to deal with larger ensembles (with a

large number of paths) is to trade running time for an approximate solution by randomly

selecting a subset from the set of all possible bands as suggested in [66]. In the case of

ensembles with long paths, skipping vertices in the description of the paths may also

provide an acceptable compromise between accuracy and performance. Developing a

heuristic for skipping vertices in large ensembles of long paths to achieve an optimum

trade-off between running time of analysis and the quality of the solution would be an

interesting avenue for future work. It would also be interesting to explore the application

of path boxplot in other areas such as in mobile ad hoc networks, which can be modeled
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as a graph with dynamic topology [75] and in molecular dynamics, to identify a most

representative path as an alternative to computing the mean statistics for the ensemble.



CHAPTER 5

ANISOTROPIC RADIAL LAYOUT FOR

VISUALIZING CENTRALITY AND

STRUCTURE IN GRAPHS

Portions of this chapter have been reproduced with permission from Springer and is

based on material published in Proc. GDNV, Anisotropic Radial Layout for Visualizing

Centrality and Structure in Graphs, M. Raj and R. T. Whitaker, 2018, pp. 351-364 [91].

5.1 Introduction
Graphs are an important data structure that are used to represent relationships between

entities in a wide range of domains. An interesting aspect in graph analysis is the notion of

(structural) centrality, which pertains to quantifying the importance of entities (or vertices,

nodes) within the context of the graph structure as defined by its relationships (or edges).

The need to compute centrality and convey it through visualization is seen in many areas,

for example, in biology [96], transportation [16], and social sciences [15]. In this work,

we propose a method to visualize node centrality information in the context of overall

graph structure, which we capture through intervertex (graph theoretical) distances. The

proposed method determines a layout (positions of nodes on a 2D drawing) that meet the

following two, often competing, criteria:

• Preservation of distances: The Euclidean (geometrical) distances in the layout should

approximate, to the extent possible, the graph theoretical distances between the re-

spective nodes.

• Anisotropic radial monotonicity: Along any ray traveling away from the position of

the most central node, nodes with a lower centrality should be placed geometrically

further along the ray.

We also introduce a visualization strategy for the proposed layout that further highlights
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the centrality and structure in the graph by using additional encoding channels, and demon-

strate the benefits of our approach with real data sets (see Figure 5.1 as an example).

Visualization methods for gaining insights from graph-structured data are an impor-

tant and active area of research. Significant efforts in this area are targeted toward devel-

oping effective layouts. Layout methods can have various goals that range from trying to

reduce clutter and edge crossings [17] to faithfully representing the structure by preserving

the distances between nodes and topological features [39]. As positions are the best way

to graphically convey numbers [22], layouts are also used to convey numerically encoded

measures of hierarchy or the importance associated with nodes [15, 28].

Radial layouts have been shown to be an effective method to visually convey the rel-

ative importance of nodes, where importance may be defined, for instance, by a node’s

centrality [15]. The centrality of a node is a quantification of its importance in a graph by

considering its various structural properties, such as connectedness, closeness to others,

(a) (b)

(c)

Figure 5.1. Visualization of Zachary’s karate club social network using (a) MDS, (b) radial
layout, and (c) anisotropic radial layout. Node sizes encode betweenness centrality.
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and role as an intermediary [37, 125]. In conventional radial layouts, the distance of nodes

from the geometric center (origin) of the layout depends only on the node’s centrality, and

nodes with a higher centrality value are placed closer to the origin in the layout, oftentimes

forming rings or concentric circles.

Given a graph and centrality values associated with its nodes, several approaches have

been proposed to determine a radial layout. One line of work, which deals with discrete

centrality values, attempts to minimize edge crossings [9]. Another approach, which also

tackles continuous centrality values, involves optimizing a stress energy (5.2.2) by includ-

ing a penalty for representation error (of graph distances) as well as deviation from radial

constraints [15, 16]. The penalty acts as a soft constraint wherein the solution is allowed to

deviate from the constraint at the expense of increased local stress. The literature shows

that radial constraints may also be included as a hard constraint by allowing only those

solutions that satisfy the constraints [10, 27, 29].

Although state-of-the-art methods for radial graph layout do effectively convey node

centrality, the associate circular centrality constraints make it difficult to preserve other im-

portant, structural graph characteristics such as distances, which, in turn, makes it difficult

to preserve the holistic structure of the graph. On the other hand, despite being effective in

preserving the overall structure, general layout methods such as multidimensional scaling

often fail to readily convey centrality (e.g., by failing to ensure that structurally central

nodes in the graph-theoretical sense appear near the center of the layout and vice versa).

In this chapter, we propose a method that simultaneously tackles both the above issues.

The underlying idea for the proposed layout algorithm is that we can relax the con-

straint that requires nodes with similar centrality to lie on a circle, and instead, allow for

such nodes to be constrained by a more general shape: a simple closed curve or centrality

contour. Centrality contours are nested isolevel curves on a smooth, radially decreasing

estimate of node centrality values over a 2D field. We demonstrate that the additional flex-

ibility in placing the nodes afforded by the centrality contours over circles, in conjunction

with some additional visual cues in the background, lets us achieve a better trade-off than

existing methods in conveying centrality and general structure together.
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5.2 Background
In this section, we describe the various underlying technicalities that are relevant to the

proposed method, and begin with some notation/definitions.

We define a weighted, undirected graph G(V, E, W) as a set of vertices (or nodes) V, a

set of edges E ⊆ V × V, and a set of edge weights, W : E 7→ R+, assigned to each edge.

We define n to be cardinality of node set, i.e., n = |V|. The graph-theoretical distance

(shortest-path along edges) between two nodes u and v is denoted by duv. We denote

a general position in a 2D layout as x = {x, y} and the Euclidean distance between two

nodes u and v as δ(xi, xj) = ||xu − yv||2.

5.2.1 Centrality and Depth

The need to measure, and quantify, the importance of individual entities within the

context of a group occurs in many domains. In graph analytics, this need is addressed by

centrality indices, which are typically real-valued functions over the nodes of a graph [125].

The specific properties that qualify the importance of nodes may depend on the application

or data type, and several methods to compute centrality have been proposed, such as

degree centrality [37], closeness centrality [94], and betweenness centrality [37]. Although

the emphasis of the various centrality definitions can be different, they share a common

characteristic of depending only on the structure of the graph rather than parameters as-

sociated with the nodes [125]. For the examples in this chapter, we use betweenness

centrality due to its relevance to the data sets (Section 5.4).

The betweenness centrality of a node, v ∈ G, is defined as the percentage (or number)

of shortest paths in the entire graph G that pass through the node v. As shown in the

work of Raj et al. [90], barring instances of multiple geodesics, betweenness centrality is a

special case of a more general notion of vertex depth on graphs—a generalization of data

depth to vertices on graphs. Data depth is a family of methods from descriptive statistics

that attempts to quantify the idea of centrality for ensemble data without any assumption

of the underlying distribution. Data-depth methods often rely on the formation of bands

from convex sets and the probability of a point lying within a randomly chosen band.

The extension of band depth to graphs [90] relies on the convex closure of a set of points

(via shortest paths), and thereby generalizes betweenness centrality by considering bands
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formed by sets of nodes, rather than only the shortest paths between pairs of nodes, and

allows for a nonuniform probability distribution over the nodes of the graph.

In addition to graphs, data-depth methods have been proposed for several other data

types such as points in Euclidean space [107], functions [66], and curves [67, 73]. Despite

their distinct formulations, data-depth methods are expected to share a few common de-

sirable properties [124] such as: 1) maximum at geometric center; 2) zero at infinity; and 3)

radial monotonicity, which make data depth an attractive basis for ensemble visualization

methods [73, 93, 102]. Graph centrality is a type of data depth on the nodes of a graph, and

here we pursue layout methods that convey these depth properties.

5.2.2 Stress and Multidimensional Scaling (MDS)

Our proposed method is based on a modification to the MDS objective function, and

therefore we give a brief summary of MDS. MDS is family of methods that help visualize

the similarity (or dissimilarity) between members in a data set [13]. Over the years, MDS

has been the foundation for a range of graph drawing algorithms that aim to achieve

an isometry between graph-theoretical and Euclidian distances between nodes [16, 52].

From among various types of MDS methods that exist, here we consider metric MDS with

distance scaling, which is popular in the graph drawing literature [39] (see Figure 5.2 for an

example).

In the context of graph drawing, given a distance matrix based on the graph-theoretical

(a) (b)

Figure 5.2. Interpolation and monotonic fields for a sample graph. An (a) interpolation
field for node centrality values and (b) the associated (radially) monotonic field for a 30-node
random graph generated using the Barabasi-Albert model. Node positions are determined
using MDS and node sizes encode betweenness centrality.
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distance, the goal is to find node positions X = {xi : 1 ≤ i ≤ n} that minimize the follow-

ing sum of squared residuals—also known as stress:

σ(X) = ∑
u,v

wuv
(
duv − ||xu − xv||2

)2, (5.1)

where wuv ≥ 0 is the weighting term for residual associated with pair u, v. In the proposed

work we employ a standard weighting scheme for graphs, known as elastic scaling [70], by

setting wuv = d−2
uv . Elastic scaling gives preference to local distances by minimizing relative

error rather than absolute error during the optimization.

Node positions that minimize the objective (5.1) have been shown to be visually pleas-

ing and convey the general structure of the graph [52]. Although the state-of-the-art ap-

proach for optimizing the objective function is stress majorization [39], we employ standard

gradient descent because of its compatibility with the proposed modification to the objective

(Section 5.3). The gradient of the standard MDS objective is as follows [13]:

∇σ(X) = 2VX− B(X)X (5.2)

where matrices V = (vij) and B = (bij), with 1 ≤ i, j ≤ n, can be compactly represented as

vij =

{
−wij for i 6= j

∑n
j=1,j 6=i wij for i = j

bij =

{
− wijdij

δ(xi ,xj)
for i 6= j and δ(xi, xj) 6= 0

0 for i 6= j and δ(xi, xj) = 0

bii = −
n

∑
j=1,j 6=i

bij.

5.2.3 Strictly Monotone and Smooth Regression

The proposed method also relies on the construction of a smooth and radially decreas-

ing approximation of centrality values over a 2D field, which we call the monotonic field

(Figure 5.2). The first part of this construction is an interpolation of centrality values of

sparsely located nodes on the layout to obtain a dense 2D field, which we call the interpola-

tion field (Figure 5.2a). We use thin plate splines [12] interpolation, a standard technique for

interpolating unstructured data that produces optimally smooth fields.

The next part is to construct a radially monotonic approximation of the interpolation

field. We devote the rest of this section to a brief description of the method that we use for

constructing this approximation (monotonic field), which is adapted from Dette et al. [25,

26].
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For a 1D function [25], m(t) : [0, 1] → R, an elegant algorithm for computing its

monotonic approximation m̂A(t) proceeds as follows in two steps [25]:

• Step 1 (Monotonization): Construct a density estimate from sampled values of input

function m and use it as input to compute an estimate of the inverse of the regression

function m̂−1
A .

m̂−1
A (t) =

1
Qω

Q

∑
i=1

∫ t

∞
K

(
m
( i

Q

)
− u

ω

)
du, (5.3)

where Q is the parameter controlling the sampling density, K is a continuously dif-

ferentiable and symmetric kernel, and ω is the bandwidth. Here, m̂−1
A is a strictly

increasing estimate of m−1; however, we can easily obtain a strictly decreasing estimate

by reversing the limits on the integral in ( 5.3).

• Step 2 (Inversion): Obtain the final estimate of m̂A by numerically inverting m̂−1
A .

In order to obtain an approximation to a 2D function that is monotonic along radial

lines emanating from the deepest or most central node, we use a polar coordinate rep-

resentation of the field. We build the polar representation by sampling the interpolation

field along 360 evenly spaced, center-outward rays. The idea is to repeatedly monotonize

the interpolation field with respect to a single variable, i.e., for a fixed value of the angular

coordinate, obtain a (1D) estimate that is strictly decreasing along the radial coordinate. We

then repeat this process, successively monotonizing 1D functions that correspond to each

value of the angular coordinate in its (discrete) domain; see Figure 5.2b for an example of

the resulting monotonic field. The spline interpolation is smooth, and by the properties of

the monotonic approximation (see [26]), the resulting monotonic field is smooth (except at

origin, where polar the coordinates maybe nonsmooth).

5.3 Method
Here we describe our method in two parts. First is the layout algorithm (Section 5.3.1),

and second is a visualization strategy (Section 5.3.2) that complements the layout to simul-

taneously convey graph structure and node centrality.
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5.3.1 Anisotropic Radial Layout

In addition to preserving the graph-theoretical distances, we also aim to place every

node on a radially monotonic approximation of a centrality field—called the monotonic field

(Section 5.2.3)—such that the value of the field at the location of the node is equal to the

centrality value of the node. We accomplish this by modifying the (distance preserving)

MDS objective or stress (Section 5.2.2) to incorporate the following penalty term, which

penalizes the deviation of monotonic field values from the node centrality values

ρ(X) =
(

MX,c(X)− c
)2, (5.4)

where c ∈ Rn is a vector of node centrality values and X ∈ Rn×2 = {xi : 1 ≤ i ≤ n} denotes

associated node positions. MX,c(X) ∈ Rn denotes a vector of values of the 2D monotonic

field at locations X. The symbols in the subscript (X and c) denote the use of node positions

and centrality values in the construction of the monotonic field. In the limiting case where

the interpolation field (Section 5.2.3) itself is monotonic, the value of this penalty term drops

to zero. Our final objective is a sum of the MDS stress and the above penalty term, and can

be stated as follows:

γ
(
X
)
= σ(X)︸︷︷︸

MDS stress

+ wρ ρ(X), (5.5)

where wρ is a weighting factor that controls the influence of the penalty, with respect to the

MDS stress. The gradient of the modified objective above is obtained as

∇γ
(
X
)
= ∇σ(X) + wρ × 2

(
MX,c(X)− c

)
�∇MX,c(X)︸ ︷︷ ︸

∇ρ(X)

, (5.6)

where � denotes element-wise product. It is difficult to compute the gradient of MX,c(X)

because of the dependence of M on X and the associated process for monotonic approx-

imation. Therefore, we let the field lag, and treat X (in subscript) as a constant when

numerically approximating the gradient of M. We deal with the resulting accumulation

of error by recomputing the depth field after a fixed number of iterations, or lag, denoted

by `.

The parameters wρ and ` need to be chosen carefully. wρ needs to be set to find a balance

between preserving the intrinsic graph structure and ensuring that the centrality of nodes

matches the field value at their position. Figures 5.3a-c show, respectively, results of a
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(a) (b)

(c) (d)

Figure 5.3. Sensitivity of anisotropic radial layout to penalty weights for the graph
in Figure 5.2: (a) wρ = 0.1, (b) wρ = 1, (c) wρ = 10; centrality contours with isovalues
0.1, 0.2, and 0.3 as well as nodes X (red) and Y (green) with centrality values 0.2 and 0.1
are identified, and (d) a typical plot of objective energy during the optimization process
(wρ = 1).

small wρ unable to move nodes to appropriate positions with regard to the field (observe

nodes X,Y), an intermediate wρ, and a large wρ resulting in unnecessary structural distortion

with regard to initial positions (observe node Y). The parameter ` controls the lag of the

monotonic field; if ` is too small, the frequent updates can lead to instabilities, and values

that are too large can cause slow convergence. A typical energy profile during optimization

is shown in Figure 5.3d, where the sharp changes in the total energy correspond to the

updates of the monotonic field. We encourage the layout to be as similar as possible to
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Algorithm 1: Layout with anisotropic radial constraints
Input: Graph G = {V, E, W}, maximum number of iterations k ∈N, depth field lag

`, step size α, weighing factor wρ

Output: Positions X = {xi : 1 ≤ i ≤ n} for all vi ∈ V
n← |V|
X0 ← initialize node positions using MDS ; /* (Section 5.2.2) */

c ∈ Rn ← compute graph centrality values for vi ∈ V
j← −1 ; /* index to keep track of field updates */

for t = 1, . . . , k do
if t mod ` = 0 then

j← j + 1
Xj ← Xt

MXj,c(Xt)← compute monotonic field ; /* (Section 5.2.3) */

end

Xt+1 ← Xt − α
(
∇σ(Xt) + wρ × 2

(
MXj,c(Xt)− c

)
�∇MXj,c(Xt)

)
; /* gradient

update step (Section 5.3.1) */

end

the MDS layout by initializing the node positions as determined by an unmodified MDS

objective [39]. The entire process, as summarized in Algorithm 1, iterates until updates no

longer result in significant changes to node positions.

The computational complexity of a single iteration is O(n3) due to the step of comput-

ing the monotonic field, which involves interpolation using thin plate spline. However,

we update the field only once every ` iterations, which leads to a complexity ofO(n2) (the

same as MDS) for a large majority of iterations.

5.3.2 Visualization

In this layout, nodes are constrained to lie on level sets of centrality, which are general

closed curves, rather than circles, and the shapes of these curves depend on the structure

of the graph. Therefore, we can improve the interpretability of the layout and reduce

cognitive load for the user by providing additional cues for shapes of these curves. We

provide cues in the form of faded renderings of centrality contours (isolines on the mono-

tonic field) and a monotonic field colormap in the background. The radial monotonicity

described in Section 5.3.1 ensures that the contours are nested curves that enclose a common

maxima (at origin); leading to a bijective mapping between contours and centrality values,

and pushing nodes to lie on the unique contour that corresponds to their centrality. In
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this chapter, we normalize node centrality to fall between 0 and 1, and show 10 contour

curves that evenly span this range. We also use node size as an extra encoding channel

for centrality —in addition to location—to further highlight the order structure. We can,

of course, use the size channel to encode centrality even with the standard MDS layout;

however, that approach can lead to the issue of conflicting centrality cues from size and

location channels (see Figure 5.1a).

5.4 Results
In this section we demonstrate anisotropic radial layout using three real world data

sets.

5.4.1 Zachary’s Karate Club

The Zachary’s karate club graph is a well-known data set that is a social network of

friendships in a karate club at a US university, as recorded during a study [122]. This

graph contains 34 nodes, each representing an individual, and 78 unweighted edges that

represent a friendship between the associated individuals (Figure 5.1). During the period

of observation, a conflict between two key members, identified as the “administrator” and

“instructor,” leads to a split in the club, giving it an interesting two-cluster structure. In

Figure 5.1, nodes representing members who are part of the instructor’s and administra-

tor’s groups are drawn in green and blue, respectively.

Figure 5.1 shows three different visualizations of the karate club network: MDS, radial

layout (from [16]), and anisotropic radial layout (ARL). We can make a few observations

from the visualizations. Although MDS does a good job of preserving the two clusters,

it does not unambiguously convey centrality. On the other hand, radial layout clearly

showcases the centrality at the expense of dispersing the clusters by distorting distances

among their nodes, thereby obscuring their internal structure. We see that ARL is able to

largely preserve the structure seen in MDS with clearly distinguishable clusters, and also

clearly convey the centrality information. Although radial layout pushes the instructor’s

group far away due to low betweenness centrality, ARL lets them remain close by bringing

in the outermost contour toward to the group instead. Similarly, the administrator is also

allowed to remain closer to their group by the protrusion of the inner contours, which
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enclose the most central nodes, toward the administrator.

5.4.2 Terrorist Network From 2004 Madrid Train Bombing

Figure 5.4 and Figure 5.5 shows visualizations of a network of individuals connected 

to the bombing of trains in Madrid on March 11, 2004. These data were originally com-

piled by Rodriguez [92] from newspaper articles that reported on the subsequent police 

investigation. Sixty-four nodes represent suspects and their relatives, and 243 edges have 

weights ranging from 1 to 4, which represent an aggregated strength of connection based 

on various parameters such as contact, kinship, ties to Al Qaeda, etc. [44]. In Figure 5.4, (as 

well as Figures 5.5-5.7), distances between nodes are related inversely to edge weights. 

In the visualization, we identify nodes using numbers to avoid text clutter; however, 

we include a mapping to the names of individuals represented by the nodes in the 

Appendix.

Rodriguez [92] identifies several key suspects as follows: ring leaders (marked in blue 

in Figure 5.4), members of a field operating group, who were closely involved with the 

actual carrying out of the attack (green); intermediaries (red); and suspects with local 

roots, ties to foreign Al Queda, and those who supplied explosives. We see that ARL 

(Figure 5.5) is able to better preserve the structure and cohesiveness of the core members 

of the field operating group in comparison to the radial layout (Figure 5.4b). Critically, 

a key mastermind in this event, despite having a low centrality (due to communicating 

often through an intermediary), is allowed to be close to the center in the ARL. This 

arrangement, which is possible due to the ability of centrality contours to adapt to the 

circumstance, preserves the close association between the masterminds that is lost in the 

radial layout. We also see that the flexibility of contours in ARL preserves the locality of 

various groups, which allows us to see the role of intermediaries with high centrality in 

acting as a bridge between various groups.

5.4.3 Coappearance Network for Characters in Les Miserables

The third data set is a graph of character associations in the famous French novel Les 

Miserables [55]. This graph consists of 77 nodes, each representing a character in the novel, 

and 254 weighted edges where the weights represent the number of chapters that feature 

both characters associated with an edge.
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(a)

(b)

Figure 5.4. Network of terrorists and affiliates connected to the 2004 Madrid train bombing
using (a) MDS and (b) radial layout.
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Figure 5.5. Network of terrorists and affiliates connected to the 2004 Madrid train bombing
using anisotropic radial layout.
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(a)

(b)

Figure 5.6. Coappearance network for characters in the novel Les Miserables using (a) MDS
and (b) radial layout.
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Figure 5.7. Coappearance network for characters in the novel Les Miserables using
anisotropic radial layout.
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We see the that the main protagonist Valjean (marked in red) is placed prominently

in all three visualizations (Figure 5.6 and Figure 5.7). However, other key characters

in the plot such as Inspector Javert (blue) and Cosett (orange), who do not appear often

with characters other than the protagonist (and thus have low betweenness centrality), are

treated differently. Although the radial layout relegates them to the periphery (far from

Valjean) (Figure 5.6b), MDS (Figure 5.6a) paints a conflicting picture with regard to their

centrality, e.g., Cosett’s node almost overlaps with Valjean despite its low centrality. In

contrast, the proposed ARL (Figure 5.7) is able to coherently convey the low centrality

of Inspector Javert and Cosett, as well as their closeness to Valjean. The above issue of

distance distortion appears to be a frequent occurrence in the radial layout due to the

many characters who have a low centrality value, causing them to end up being packed in

the outer periphery. A case of contrast is that of the character Bishop Myriel (green), who

despite being associated with several characters, is seen with Valjean only once.

5.5 Discussion
This chapter describes an energy-based layout algorithm for graphs, called anisotropic

radial layout, which conveys structural centrality using anisotropic, radial constraints, that

also preserve approximate distances (or structure) in the graph. In contrast to existing

methods for conveying node centrality that employ an isotropic centrality field [10, 16],

the proposed method determines an anisotropic centrality field on which to project nodes.

Although the energy minimization strategy described in this chapter allows the solution

to deviate from constraints, one can enforce hard constraints by adding a postprocessing

step that projects nodes onto the closest position on their associated isocontour.

The key implication of the anisotropic centrality field in our method is that more central

nodes are allowed to be placed further from origin than less central nodes—without an

energy penalty—if they do not lie on a common ray, which aids our objective of achieving

a better balance between visual representations of centrality and structure than possible

with existing methods. Our objective differs from other prior works that use centrality or

continuous fields to visualize the structure of dense graphs [109, 110].



CHAPTER 6

VISUALIZING HIGH-DIMENSIONAL DATA

USING ORDER STATISTICS

Portions of this chapter have been reproduced with permission from John Wiley and 

Sons, and based on material that is to appear in an article titled ”Visualizing High-

Dimensional Data using Order Statistics” by Raj, M and Whitaker, R. in the Computer 

Graphics Forum Volume 37(2018), Number 3.

6.1 Introduction
Multidimentional data appear frequently in a wide range of domains and applications. 

For example, data from domains such as healthcare, engineering, and social sciences often 

contain a large number of dimensions [59]. The various dimensions in such data can con-

tain either numerical or categorical values. Multidimensional data can also have complex 

structures, for example, the data can be multimodal with several clusters or lie on a lower 

dimensional manifold in a high-dimensional space. A wide range of visualization methods 

has been developed to help visualize and understand such complex, high-dimensional 

data sets [64].

Among the various methods for analyzing high-dimensional data, dimensionality re-

duction methods that project data onto lower dimensional spaces are often useful for 

getting a quick and general overview of the data. These methods include various linear 

and nonlinear methods such as principal component analysis (PCA), multidimensional 

scaling (MDS), and t-distributed stochastic neighbor embedding (t-SNE). The objective of 

these methods is often to convey the structure of data by preserving approximate pair-

wise distances from the original or intrinsic space in the lower dimensional embedding 

space. Methods such as PCA and MDS can be formulated to work with only inner product 

information, which is useful for visualizing data in kernel spaces, which may lack an 

explicit vector representation [95]. Dimensionality reduction techniques are also used in
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conjunction with other visualization methods [69, 93].

Despite the usefulness of dimensionality reduction methods for visualizing multidi-

mensional data, there are a few critical limitations associated with those methods. The

PCA and related subspace-based approaches may not be suitable if the data are not well

approximated by a linear subspace. Although MDS and nonlinear methods such as t-SNE

are able to highlight geometric relationships, even in the presence of a nonlinear structure,

they are susceptible to misrepresenting the statistical structure in the data. For example,

points that are rare and on the outer periphery of a distribution in a high-dimensional

space may be projected close to a more typical point near the center of the distribution.

Such instances are common, and unsurprising if we consider that the objective of those

methods is typically to preserve the relative distances between points with no mechanism

to correctly convey how central or typical points are in a data set or distribution. Although

the focus on preserving relative distances to reveal high-level structure can be useful, doing

so at the expense of centrality information can hinder a true understanding of the data set

as a whole, and be particularly detrimental for the purpose of analyzing outliers [116].

In this chapter, we propose a novel method to project multidimensional data onto a

lower dimensional space while preserving order structure as well as relative distances in

the data. The focus of this work is different from prior work in robust multidimensional

scaling that aims to mitigate the undesirable effects resulting from inconsistencies in data

(pairwise distances in the original space) [35, 100]. In contrast, the proposed method is rel-

evant even when there are no inconsistencies in the data. The proposed method does share

the ideology with a family of methods from the domain of graph drawing, where the goal

is to determine node positions in a drawing that simultaneously conveys graph-theoretic,

internode distances (distances along edges) as well as node centrality or importance based

on complementary, graph-theoretical measures [10, 15, 16, 91]. The internode distances in

the drawing approximate the graph-theoretical distances under the constraint that the

distance of each node from the drawing’s geometric center be proportional to its graph

centrality value.

In this work, we aim to preserve order statistics of the data in the original space by

ensuring that less central or outlying points do not end up appearing to be more central

in low-dimensional embeddings, or vice versa. We also want to preserve relative pairwise
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distances in the data as much as possible. An overview of the proposed projection method

for satisfying the above objectives is as follows. We first quantify the centrality of each

member in the original space by employing data-depth methods (see Section 6.2.1). Next,

we design a penalty term to be added to the MDS optimization objective that penalizes

low-dimensional embeddings, where along any ray traveling away from the position of

the most central member, less central points are situated further from the center than more

central points. Although we demonstrate the proposed method with the help of the MDS

objective, the general approach can be used to similar effect with any other dimensionality

reduction method that involves iterative optimization.

The goal of visualizations, in general, is to highlight features of interest in the data.

These feature often include summary statistics such as most central or typical member

(also known as the median), least central or outlier members, as well as the shape and

the spread of the bulk of data. In case of one-dimensional (1D) and two-dimensional (2D)

data, visualizations such as the Tukey boxplot [107] and the bivariate bagplot [93] convey

a visual summary of the data by displaying summary statistics. In this chapter, we exploit

the coherent order structure in the embedding space afforded by the proposed projection

method to develop visualization strategies, along the lines of the bivariate bagplot, for

multidimensional data (i.e., where d > 2).

The main contributions of this chapter are:

• A novel method for projecting multidimensional data using order statistics called

order aware projection (OAP).

• Two visualization strategies based on the proposed projection method, namely, field

overlay plot and projection bagplot.

• An interactive prototype tool to explore data.

• A demonstration of the effectiveness of the method with four real data sets.

The rest of the chapter is organized as follows. Section 6.2 provides an overview of the

technical background related to the proposed methods. Section 6.3 presents a description

of the proposed dimensionality reduction method and visualization strategy. We demon-
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strate proposed methods using real data in Section 6.4, which is followed by a general

discussion in Section 6.5.

6.2 Background
Here we provide an overview of necessary technical background and related work.

6.2.1 Order Statistics and Data Depth

Order statistics for a data set are members from the data set placed in an ascending

order based on some criteria. For our purpose, we are interested in center-outward order

statistics that help quantify how central or outlying a member is with respect to a data

set. In the case of 1D numeric data, sorting numbers based on distance from the median

provides an easy way to obtain order statistics. When the data are multidimensional, a

family of methods from descriptive statistics known as data depth can be used to quantify

center-outwardness. Data depth methods exhibit several useful properties, which make it

an attractive basis for analyzing data. These properties include robustness, maximum at

center, monotonicity, and zero at infinity [124].

Data-depth methods have been proposed for tackling several types of multidimen-

sional and multivariate data, for example, high-dimensional points [107], functions [66],

sets [115], multivariate curves [73], and paths on a graph [90]. In this chapter, we use

different formulations of data depth based on the type of data. We use half-space depth

for numerical multidimensional data with relatively few dimensions (Section 6.4.2). We

use functional depth for dealing with higher dimensional data because it can be efficiently

computed for such data (Section 6.4.1). Finally, we use set depth for categorical data sets

(Sections 6.4.3 and 6.4.4).

A brief overview of half-space depth, functional depth, and set depth follows. Half-

space depth of any point x ∈ Rd with respect to a set of points X ∈ Rd is defined as the

smallest number of data points from S that can be contained in a closed half space also

containing x [31, 107], which can be stated as

dhalfspace(x|X) = min
a∈Rd\0

|
{

p ∈ X : 〈a, p〉 ≥ 〈a, x〉
}
|. (6.1)

Functional depth of any function g(t) with respect to a set of functions F = { fi(t) :

1 ≤ i ≤ n}, fi : D → R, where D and R are intervals in R, is given by the probability
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of g(t) being contained in a functional band, where functional band is the region between

the min/max envelope formed by a set of j randomly chosen functions { f1(t), . . . , f j(t)} ∈

F [66], which can be stated as

dfunctional (g(t)|F) = Prob
(

g(t) ⊂ fB
[
{ f1(t), · · · , f j(t)}

])
, (6.2)

where fB[ · ] denotes the functional band. A function g(t) is contained in the functional

band formed by { f1(t), . . . , f j(t)} if it satisfies the following:

g(t) ⊂ fB
[
{ f1(t), · · · , f j(t)}

]
iff

min
(

f1(t), · · · , f j(t)
)
≤ g(t) ≤ max

(
f1(t), · · · , f j(t)

)
∀t.

(6.3)

Set depth of any set s with respect to a set of sets S = {si : 1 ≤ i ≤ n} is given by

the probability of s being contained in a set band, where set band is the set bounded by

the union and intersection of j randomly chosen sets { s1, . . . , sj} ∈ S [115], which can be

stated as

dset (s|S) = Prob
(
s ⊂ sB

[
{s1, . . . , sj}

])
, (6.4)

where sB[ · ] denotes the set band. A set s is contained in the set band formed by {s1, . . . , sj}

if it satisfies the following:

s ⊂ sB
[
{s1, . . . , sj}] iff

j⋃
k=1

sk ⊂ s ⊂
j⋂

k=1

sk.

Function depth and set depth are stable with respect to choice of j where 2 ≤ j ≤ n [66,

115].

6.2.2 Data-Depth-Based Visualizations

A common area of application for data depth methods is ensemble visualization where

the order statistics obtained using data depth are used to design summary visualizations

for ensembles of various kinds of data. The perhaps most well-known example is the

Tukey boxplot [107]. Other depth-based visualizations have been proposed for bivariate

data [93], high-dimensional data [47], ensembles of functions [102], surfaces [40], sets or

isocontours [115], curves [67, 73], and paths on graphs [90]. Our work relates closely to the

visualizations for multidimensional data, particularly the bivariate bagplot [93] and the

high-density region (HDR) boxplot [48] (see Figure 6.1).
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(a) (b)

Figure 6.1. Existing visualizations for multivariate data. (a) Bivariate bagplot and (b)
high-density region (HDR) boxplot visualizations of El Niño data set (12-dimensional tem-
perature data for each year from 1951 to 2007) generated using R Rainbow package [99].

For 2D data, the bivariate bagplot (Figure 6.1a) is a visualization technique that high-

lights the median, spread, skewness, and outliers in the data. The first step for drawing

a bagplot is to determine order statistics using half-space depth. This step is followed by

drawing the inner and outer convex polygons or bands. The inner band highlights the

most central half of the data as determined by the order statistics, and the outer band is

constructed by inflating the inner band by a constant factor α. Points outside the outer

band are considered to be outliers. The HDR boxplot uses bivariate kernel density estima-

tion to identify regions of interest. The bivariate bagplot as well as the HDR boxplot use

dimensionality reduction methods, typically PCA, for dealing with higher dimensional

data (d > 2) by projecting the data to 2D as a preprocessing step [47, 48].

6.2.3 Multidimensional Scaling (MDS)

Since the proposed projection method uses the MDS objective function, here we give a

brief overview of MDS and its usage in dimensionality reduction. MDS refers to a popular

class of techniques for visualizing similarities between members of a data set. Given

a collection of high-dimensional points Y = [y1, . . . , yn]T ∈ Rn×d, the goal of MDS is to
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find a low-dimensional embedding X = [x1, . . . , xn]T ∈ Rn×k, where k < d, such that the

discrepancy between the pairwise distances in the original space Rd and corresponding

distances in the embedding space Rk is minimal.

Although there are several variants of MDS, in this chapter we use a variant known

as metric MDS with distance scaling; without loss of generality. Distance scaling makes

this variant of MDS nonlinear with more emphasis on conveying smaller distances. The

objective function of metric MDS is also known as stress, and after incorporating distance

scaling, it can be written as follows [13, 70]:

σ(X) = ∑
i<j

wij
(
δij − d(xi, xj)

)2, (6.5)

where δij = ||yi − yj||2, d(xi, xj) = ||xi − xj||2, and wij = δ−2
ij . The gradient of the above

MDS objective can be written as follows [13]:

∇σ(X) = 2VX− B(X)X (6.6)

where matrices V = (vij) and B = (bij), with 1 ≤ i, j ≤ n, can be represented as

vij =

{
−wij for i 6= j

∑n
j=1,j 6=i wij for i = j

bii = −
n

∑
j=1,j 6=i

bij

bij =

{
− wijδij

d(xi ,xj)
for i 6= j and d(xi, xj) 6= 0

0 for i 6= j and d(xi, xj) = 0.

6.2.4 Monotone Regression Along One Variable for
Multivariate Data

The proposed projection method also involves computing a continuous and smooth,

radially decreasing approximation of depth of members in a 2D embedding. We call this

approximation the monotonic field (Figure 6.2c). Note that data-depth values are computed

for points in the original space and not after they are projected onto the embedding space.

To construct a monotonic depth field from a sparse set of depth values arranged in a 2D

embedding plane, we start by computing a smooth interpolated field (Figure 6.2b) of depth

values using the thin plate spline technique [12]. In what follows, we briefly describe our

approach for computing the monotonic field by radially monotonizing the interpolation
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(a) (b) (c)

(d) (e)

Figure 6.2. Various stages during the proposed methods. a) Points from an anisotropic, 3D
normal distribution projected on a 2D plane using MDS. Circle sizes indicate half-space
depth of points in the original 3D space. b) The initial interpolated field in the background
of the MDS projection. c) The initial monotonic field in background obtained from initial
interpolated field. d) Field overlay plot using order aware projection (OAP) after optimiza-
tion is complete. The final monotonic field shown in the background. e) Projection bagplot
visualization. Median is shown in yellow. Deep blue indicates 50% band and light blue
indicates 100% band.

field. This approach is adapted from a technique for performing monotone regression for

multivariate data [26].

The process of computing radially monotonic approximations of a smooth 2D field

depends on a method to find monotonic approximations of univariate data. Given a

smooth 1D function m(t) : [0, 1] → R, the following two steps provide a monotonic ap-

proximation, m̂A(t), that is smooth and first-order asymptotically equivalent to m(t) [25]:

• Step 1 (monotonization): Sample input function at regular intervals, compute a den-

sity estimate of the samples, and then compute a cdf of the density estimate to arrive
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at the inverse of the monotonic approximation.

m̂−1
A (z) =

1
Nω

N

∑
i=1

∫ ∞

z
K

(
m
( i

N

)
− u

ω

)
du, (6.7)

where N controls the sampling resolution, and K is a smooth, symmetric kernel with

bandwidth ω.

• Step 2 (inversion): Calculate the inverse of m̂−1
A , which is the desired monotonically

decreasing approximation of the 1D function m(t).

For computing a radially monotonic approximation of the interpolated field, we pro-

ceed by resampling the field onto a polar grid centered at the median (deepest member

as per data depth computed in the original space). We then treat values on the field

along each of the evenly spaced angular coordinates as 1D functions, which can then be

monotonized using the procedure described above. On monotonizing those 1D functions

along each direction, we arrive at the monotonic field, which we then resample back

to the Cartesian coordinates. The resolution of the polar grid, both radial and angular,

determines the quality (smoothness) of monotonic field (we use 360 radial divisions for

results in this chapter). The smoothness of the interpolation field is preserved through this

process, meaning that field values along adjacent directions vary smoothly and remain

coherent, due to the properties of the monotonization process (except at origin due to the

intermediate polar coordinate representation) [26].

6.3 Method
Here we describe the proposed projection method, which preserves the centrality struc-

tures using order statistics (Section 6.3.1) and visualization strategies, which use the resul-

tant embedding (Section 6.3.2).

6.3.1 Projecting Multidimensional Data Using Order
Statistics (Order Aware Projection)

The high-level goal of our projection method is to preserve both the relative distances

between individual members as well as the order statistics from the original multidimen-

sional space when computing a lower dimensional embedding. To achieve this, we design

an objective function that comprises two terms. The first term is identical to the MDS
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stress (Section 6.2.3), which penalizes discord in pairwise distances between intrinsic space

and the embedding. The second term levies an energy penalty for discord in the center-

outward order statistics. Since the order statistics are determined using data depth, we call

this term the depth penalty.

The data-depth values computed in the original space (Section 6.2.1) and the monotonic

field computed in the embedding space (Section 5.2.3) are used to quantify the discord

in order structure between the original and embedding spaces. The isocontours of the

monotonic field mimic the monotonic, center-outward decrease of depth values in the

original space. The depth penalty at each point is proportional to the difference between

its depth value in the original space and the depth values of the monotonic field sampled

at the location of its projection in the embedding space, and can be expressed as follows:

p(X) ∝
(

MX,h(X)− h
)2, (6.8)

where X = [x1, . . . , xn]T ∈ Rn×k, h ∈ Rn×1 contains depth values associated with X com-

puted in the original space Rd, where k < d, and MX,h(X) ∈ Rn×1 denotes values of the 2D

monotonic field at positions in X. The mention of X and h in the subscript indicates their

use in the construction of the monotonic field, and X in parenthesis indicates positions

where field values are sampled. If the interpolated field (Section 6.2.4) is also itself radially

monotonic, the value of depth penalty term approaches zero. The complete objective

function, which includes both MDS stress and depth penalty, can be stated as follows:

γ
(
X
)
= σ(X)︸ ︷︷ ︸

MDS stress

+ wp p(X), (6.9)

where wp is a constant of proportionality controlling the relative importance of the depth

penalty with respect to MDS stress. The gradient of the above objective can be derived as

∇γ
(
X
)
= ∇σ(X) + wp × 2

(
MX,h(X)− h

)
�∇MX,h(X)︸ ︷︷ ︸

∇p(X)

, (6.10)

where � denotes the element-wise product. We perform an optimization of the above

objective using gradient descent until X converges or the maximum number of allowed

iterations is reached. The proposed projection method is summarized in Algorithm 2.

Optimization of the above objective requires a few considerations in practice. First,

computing the gradient of the monotonic field M at positions X is nontrivial due to the
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Algorithm 2: Order Aware Projection (OAP)

Input: Y = [y1, . . . , yn]T ∈ Rn×d, maximum number of iterations imax ∈N, depth
field lag `, step size τ, depth weight wp

Output: Positions X = [x1, . . . , xn]T ∈ Rn×k where k < d
X0 ← compute initial embedding using MDS ; /* (6.2.3) */

h ∈ Rn×1 ← compute order statistics for {y1, . . . , yn} ∈ Rd

j← −1 ; /* counter for field updates */

for i = 1, . . . , imax do
if i mod ` = 0 then

j← j + 1
Xj ← Xi

MXj,h(Xi)← compute monotonic field ; /* (6.2.4) */

end

Xi+1 ← Xi − τ
(
∇σ(Xi) + wp × 2

(
MXj,h(Xi)− h

)
�∇MXj,h(Xi)

)
; /* perform

gradient update (6.3.1) */

end

dependence of M itself on X. We deal with this issue by letting the field lag, which means

to recompute M only after a fixed number of iterations, `, have passed since the previous

update and treat it as a constant during all intervening iterations (see Figure 6.3). If field

M is held constant (` = ∞), convergence at a local minima can be guaranteed due to

properties of gradient descent. On allowing the field to lag suitably (1 ≤ ` < ∞, see Sec-

tion 6.5), in practice we observe convergence to a lower energy state, although a theoretical

guarantee remains a topic for future work. This approach is also used for minimizing

similar energies for computing graph layouts [91]. Second, for stability with regard to

the median, the proposed method relies on known robustness of data-depth methods in

situations of data contamination [102, 107, 115]. In cases where there are multiple members

identified as a median in the original space, we choose the member with the highest depth

value among those in the embedding space. This approach helps reduce overall energy

if different medians are projected far apart, as is often observed with categorical data

(Sections 6.4.3 and 6.4.4).

In the case of multimodal data where class membership information is known in ad-

vance, we construct a separate monotonic field for each class centered at the median of

that class, which leads to separate, exclusive depth penalty terms that apply only to the

members of the associated class (Sections 6.4.2 and 6.4.4). The MDS term is the same as in
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Figure 6.3. The typical profile for MDS stress and depth penalty during the optimization
process. MDS stress increases slightly. The depth penalty undergoes sharp drops periodi-
cally at iterations with monotonic field updates.

the general case (which assumes a unimodal distribution) and considers pairwise distance

relationships across the entire data set. This approach preserves the order structure within

each class while allowing MDS forces to determine the relative placement of different

classes.

6.3.2 Field Overlay and Projection Bagplot Visualizations

At the end of the optimization process, all members in the data set are aligned with their

corresponding isocontours (whose isovalue matches member depth) on the underlying

monotonic field. The shape of the isocontours depends on the data and can often provide

useful insights into the structure of the data in the original space. Our first visualization

strategy, called field overlay plot, is to present the OAP embedding overlaid on the asso-

ciated monotonic field (Figure 6.2d). We show the monotonic field as a color heatmap

with isocontour lines for 10 equidistant values spanning the range of depth values. This

approach helps with the interpretability of the OAP embedding by highlighting the depth

associated with each member as well as the regions/directions of fast and slow depth

changes.

Due to the radially, monotonically decreasing property of the monotonic field, all iso-

contours divide the embedding space into inner and outer regions, which exclusively

contain members with higher and and lower depth in the original space. We propose



90

the projection bagplot visualization (Figure 6.2e), which uses this arrangement of members

in the embedding space to convey the median, inner, and outer bands analogous to those

seen in the Tukey boxplot [107]. The depth value of the isocontour corresponding to the

50% band, h50%, is chosen to be the value of the member at 50th percentile by ranking

the members’ depth values. The 100% band is formed by inflating the 50% band by a

constant factor α. We therefore have h100% = hmedian − α× (hmedian − h50%), where hmedian

is the depth value of the median (highest depth value by definition) and α = 1.5 typi-

cally [102, 107]. We use higher and lower color saturation for indicating band/members in

the 50% and 100% bands, respectively. For multimodal data with known class membership

information, a separate set of 50% and 100% bands is computed and displayed for each

class as demonstrated in later figures.

The projection bagplot visualization shares some similarities with both the bagplot and

the HDR bagplot. The interpretation of the bands in the proposed method is similar to

that for the bagplot, whereas the shape of bands is smooth and star shaped like in the

HDR bagplot. Despite the similarities, the proposed method is notability different in its

handling of multidimensional data projected to lower dimensions due to the emphasis on

maintaining the center-outward order of members during the order-preserving projection

process. Although glyph sizes or color can be modulated to convey order statistics, the

reliance of bagplot and HDR bagplot visualization on existing dimensionality reduction

techniques [48] can lead to a conflict between glyph size/color and location cues (e.g.,

members appearing as outliers due to smaller glyphs also appearing closer to the center).

Furthermore, when displaying large data sets, available display space may place an upper

bound on the glyph sizes, thereby restricting the usable range of glyph sizes.

6.4 Results
We now present some example visualizations of real data sets with existing and pro-

posed methods.

6.4.1 MNIST Data

The MNIST data set is popular in the machine learning community and is comprised

of thousands of samples of handwritten digits [56]. The samples are formatted as 28× 28
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pixel gray-scale images, resulting in each sample being comprised of 784 dimensions.

Figure 6.4 shows two visualizations of a random subset of 100 samples of digit 0, although

Figure 6.5 shows digits 0, 1, and 7 with 100 samples each. We consider each sample to

be an instance of a 784-dimensional function and use functional depth to compute order

statistics. In Figure 6.5, we use order statistics computed for each digit separately. These

order statistics are used to obtain an OAP embedding, which is used to draw a field

overlay plot (Section 6.3.2). In Figure 6.5, we use the proposed visualization strategy for

multimodal data with a separate monotonic field for each digit (Section 6.3).

On comparing the MDS embedding Figure 6.4a and the proposed field overlay plot

Figure 6.4b, we can make a few interesting observations. First, we notice that the un-

derlying depth contours make it easy to spot outliers in the field overlay plot. Since the

contours adapt to the data, we also notice different outlier characteristics, such as sharing

some similarity with other members (see member A) or being more peculiar (see member

B). We also notice that the proposed projection (OAP) presents more clique-like structures,

often with similar members in a tighter cluster than in the MDS (see cliques around region

C). The formation of cliques can be understood by considering that members in a relatively

(a) (b)

Figure 6.4. MNIST data sample visualizations: (a) MDS and (b) field overlay plot using
order aware projection (OAP). Outliers and cliques appear more prominent in the field
overlay plot.
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Figure 6.5. MNIST data sample visualization for multiple digits (0, 1, and 7) with field
overlay plot using OAP. Monotonic fields corresponding to 0, 1, and 7 are shown using
heatmaps and isocontour lines drawn in green, blue, and red, respectively. Higher satu-
ration of colors in the heatmaps indicates a higher value of the monotonic field. Unusual
members are apparent on tracing outermost isocontours.

local region of the original space would tend to have similar depth values and low pairwise

distances, and would be encouraged to be placed similarly in the embedding by both

depth and MDS energies. In Figure 6.5, we can observe the different monotonic fields

for digits 0, 1, and 7. The higher overlap of digit 7 with other digits, particularly with digit

1, is immediately clear. Furthermore, on tracing the outermost isocontours of fields, we

are immediately drawn toward outlying members that have been placed far from other

members, or share similarities with other digits. For example, see instances marked by K

and L, respectively, in Figure 6.5.

6.4.2 Iris Flower Data

We obtained the well-known Iris data set from the UCI machine learning repository [59].

The data set contains flower sepal and petal measurements from three related species of

Iris flowers, and includes 50 instances of each species with four numeric measurements

per instance. In Figure 6.6, we use the proposed visualization strategy for multimodal
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(a) (b)

Figure 6.6. Iris flower data visualization: (a) bivariate bagplot using MDS and (b) projec-
tion bagplot using OAP. There are three species of flowers, each represented by a color,
and each circle represents an individual flower. For the blue and green classes, 50% and
100% bands overlap due to a large proportion of members with identical, lowest value
of depth. For the red class, only the projection bagplot conveys band associations of the
flowers correctly.

data with a separate monotonic field for each of the three species classes (Section 6.3). The

order statistics are computed using half-space depth for each class separately. The median

of each class is colored dark gray, and the size of the circular glyphs encodes the depth of

the members with respect to their respective classes.

Figure 6.6a shows a bivariate bagplot [48] and Figure 6.6b shows the proposed projec-

tion bagplot. In both figures, we immediately notice a difference in the structure of the

classes based on the overlap of the 50% and 100% bands. In the red (Setosa) class, we

observe a partial overlap as opposed to a full overlap in the blue (Versicolor) and green

(Virginica) classes. This observation indicates a more even spread of members in the red

class and more members at the class boundaries for the blue and green classes. We also see

that the order structures within classes are preserved in the projection bagplot; along all

outward directions from the median, the depth of the members falls monotonically. The

preservation of centrality structures prevents cases as in region D where members in the

100% band are projected to fall inside the 50% bands in the embedding in the bivariate

bagplot. Another interesting area is region E where two members are pushed out of the

100% band despite being of similar depth as other nearby points. Such layout of members
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is due to the distance-preserving aspect of the proposed objective (Equation 6.9) trying to

convey differences among members that are all on the boundary of the green class. Such

cases as highlighted by the projection bagplot are good instances for further exploration.

6.4.3 Unidentified Flying Object (UFO) Encounters Data

We now look at a data set related to UFO encounters that was compiled by Winner from

information available in the public domain [118]. The data set contains the following six

attributes (one numeric and five categorical): year of sighting, location, presence/absence

of physical effects, multimedia, extraterrestrial contact, and involvement of abduction.

To understand the typical/atypical characteristics of recorded UFO encounters across the

years, we exclude the year information, and include only the categorical dimensions in our

analysis. The distances between members needed for the MDS term are obtained through

the inner products computed using the “k0” kernel for categorical data [11]. We compute

order statistics for categorical data by using set band depth (Sec 6.2.1) and treating each

member as a set of its attribute values from all dimensions [74].

Figure 6.7 shows two visualizations for the UFO data set. An interesting feature of this

(a) (b)

Figure 6.7. Unidentified flying object (UFO) encounters data visualizations: (a) bivari-
ate bagplot using MDS and (b) projection bagplot using OAP. Each circle represents an
encounter. Deep blue, light blue, and red circle colors indicate association to the 50%
band, 100% band, and outliers. The projection bagplot is able to show correct band
associations for members as opposed to the bivariate bagplot, which misplaces some
encounter instances with respect to bands.
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data set is the presence of several members with the highest depth value that are placed

relatively far from each other. On inspection, we find that they are all sightings in the

USA, which leads to the conclusion that a large number and variety of UFO sightings are

recorded in the USA. Some sightings at other locations share many attributes of US sight-

ings, but still cannot be representative of the data, as indicated by their low depth values,

because of being at a different location (see region F). The projection bagplot (Figure 6.7b)

is able to convey this well by adjusting the shape of the 50% band to exclude those points

without a significant change in their positions, whereas the bivariate bagplot (Figure 6.7a)

shows a contradiction where members supposed to be in the 100% band are seen within

the 50% band. Another such contradiction is seen in region G, where outliers (shown in

red) appear to be inside the 100% band.

6.4.4 Breast Cancer Data

Figure 6.8 displays our final data set, which consists of a collection of breast cancer

patient attributes compiled at the University Medical Center at Ljubljana and made avail-

(a) (b)

Figure 6.8. Breast cancer data visualizations: (a) bivariate bagplot using MDS and (b)
projection bagplot using OAP. Each circle represents a set of patient attributes. The data
contain two classes based on patient outcomes: recurrence (red) and nonrecurrence (blue).
The recurrence class is seen to deviate from normal, whereas the nonrecurrence class
presents a more coherent distribution based on recorded attributes.
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able by the UCI machine learning repository [59, 126]. This data set contains two patient

classes, recurrence and nonrecurrence, with 85 and 201 instances per class, respectively.

There are nine attributes per instance such age range, tumor size, degree of malignancy,

etc. Analogous to the approach in Section 6.4.3, we use a categorical kernel to compute dis-

tances in the original space [11]. Since the data are bimodal with known class membership

information, we use the proposed projection and visualization strategy for multimodal

data with a separate monotonic field for each class (Section 6.3). The two medians are

drawn as larger circles in the color of their respective class.

This is a case of bimodal data where the classes are not clearly separated. We notice

from Figure 6.8 that the nonrecurrence class is somewhat coherent while the recurrence

class is more spread out in a ring-like distribution. Such a distribution is a case that

highlights the distinction between data depth and data density. Although depth would

be high at the geometric center of such a distribution, density would be low due to the

absence of members near the center. Form this distribution, we can infer that there must

be a large variation among the member attributes of the recurrence class, with no good

options among members to be considered typical or most representative.

As expected, the projection bagplot visualization has members in both classes arranged

radially, in order of decreasing depth from their respective class medians. The resulting

structure makes it easier to spot several interesting outlying cliques. For example, in-

stances near region H correspond to relatively younger individuals with moderate to high

tumor size and malignancy and appear to be outliers with respect to both recurrence and

nonrecurrence classes. Another interesting region of interest is J where there are instances

of older individuals with large tumor size and varying malignancy also appearing as

outliers with regard to both classes.

6.5 Discussion
This chapter provides a solution to visualize high-dimensional data (d ≥ 3) with order

statistics in a manner that is popular for visualizing lower dimensional data sets. Similar

members are positioned close in the embedding, and central or typical members appear

to be more toward the center than outlying or atypical members. To achieve such an

embedding, one might consider simply augmenting the data with an additional dimension
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containing data-depth values. However, such an approach fails to take into account the

anisotropic structure of data, and pushes for members with similar depth to be placed

at similar distance from center regardless of direction from center, with members having

higher depth value being placed closer to center. On the other hand, OAP allows more

flexibility by allowing the rate of fall of depth values to vary smoothly along across ad-

jacent directions, as long as depth values drop monotonically along each direction. This

flexibility is helpful to better preserve pairwise distances, particularly in frequently seen

cases where points near the boundary along the minor axis are projected close to the

median. For example, the proposed methods allow the point X in Figure 6.2 to remain

close to the median while also indicating that it is more outlying than it appears in the

MDS projection (compare Figure 6.2a to Figures 6.2d and 6.2e).

Oftentimes, multidimensional data to be analyzed are heterogeneous, which means

that they include both numerical and categorical dimensions. Our approach is able to

handle such data since the method’s only requirement is a way to compute distances

and center-outward order statistics, which can be computed for such data [74]. Such

data are often seen as input for machine learning tasks (e.g., classification or clustering),

and the proposed methods can be valuable to understand the structure of kernel spaces

where those tasks are performed. A key feature of the proposed projection method (OAP)

is its ability to integrate distances and order statistics from different spaces as shown

in Sections 6.4.3 and 6.4.4. We may also use order statistics with any other (possibly

non-data-depth) method that may be appropriate for the application at hand [116].

In the case of multimodal data without known class membership information, OAP can

lead to significant misrepresentation of distances if we compute data depth with respect

to all points. This misrepresentation of distances is because standard data depth methods,

which measure geometric centrality, could assign high depth values for points in region

between the clusters, even if the region is sparsely populated; low density does not imply

low centrality (see point M in Figure 6.9a). Furthermore, geometric centers of various

clusters would be assigned low depth values if they do not lie near the geometric center of

the entire distribution (see points N in Figure 6.9a). Such an assignment of depth, although

technically correct, can lead to an embedding where cluster centers seem less prominent

than surrounding points. One way to make cluster centers more prominent, which may
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(a) (b)

Figure 6.9. Field overlay plots using OAP for a synthetically generated 3D multimodal
data set with unknown class membership. Order statistics are computed using half-space
depth (a) for all points in the data set together and (b) for each cluster separately after a
clustering step using the k-means method.

be important in multimodal data, is to first cluster the data and then compute data depth,

and monotonic fields, for each cluster separately (see Figure 6.9b).

The proposed projection method (OAP) requires manual adjustment of two param-

eters: ωp, which controls the relative emphasis on the order structure with respect to

preserving pairwise distances, and `, which controls the lag between updates of the mono-

tonic field. Too small values of ωp will converge to the MDS layout, whereas too large

values of ωp can cause unnecessary distortion. We find that values between 1 and 3 for ωp

provide a good balance. In the case of `, values that are too small can cause an instability

that prevents convergence. The instability arises due to the possibility of (a typically

small) increase in overall energy accompanying the computation of the monotonic field.

With sufficiently large `, this increase is more than compensated for after points adjust

to the new field. On the other hand, too large values of ` can delay convergence due

to delayed spline updates. We use ` = 25 for all examples in this chapter. During the

iterative optimization process, the computational cost of iterations involving an update of

the monotonic field isO(n3)—arising from computation of the thin plate spline (Sec 6.2.4).

However, the majority of iterations do not involve field updates and incur a lower cost of

O(n2) operations.
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6.6 Future Work
An important area of application for our method is the visualization of data in kernel

spaces (Sections 6.4.3 and 6.4.4). Although we use set band depth for kernel-based exam-

ples in this chapter to obtain order statistics, often the only option is to compute depth

directly in the kernel space, for example, in the case of ensembles of structured data such

as chemical compound graphs [24]. Since existing methods for computing depth are not

suitable for high-dimensional kernel spaces, which is often the case with graph kernels [112],

a method to compute depth in such spaces would expand the scope of data that could

be visualized using the proposed method. Such a method to compute depth would need

to address the limitations of existing methods by being efficiently computable in high-

dimensional spaces as well as having an inner-product-based formulation for operating in

kernel spaces.

Another exciting avenue for future work would be to extend the proposed approach to

work with manifold-based dimensionality reduction techniques such as Isomap and tSNE,

which motivates the need to develop data-depth methods that are also able to operate

with respect to manifolds. Automatic estimation of parameter values based on the data

to achieve an optimum balance between conveying distances and centrality would also be

useful. Finally, projection bagplot visualization could complement other methods for set

visualization such as tabplot [106] and parallel coordinates [120] as part of an integrated,

interactive system with linked views.



CHAPTER 7

ELLIPSE BAND DEPTH

Visualizing high-dimensional data is important in many domains. Consequently, high-

dimensional data visualization continues to be an active area of research. Chapter 6 intro-

duced a technique to visualize high-dimensional data in a way that preserved the order

structure and distances in high-dimensional data. This technique relies on quantifying

the centrality of data members using data depth (see Section 2.2). Although several data-

depth methods have been introduced for computing depth in high-dimensional spaces,

current methods face challenges when dealing with data in high-dimensional spaces that

are implicitly defined using inner product functions (also known as kernel functions). This

chapter introduces a novel method, called ellipse band depth, to compute data depth in high-

dimensional kernel spaces, which are implicitly defined using inner product functions or

kernels.

A kernel is a function that corresponds to an inner product in a kernel space (also

referred to as a feature space). Kernel spaces are often high-dimensional and are related to

the original data space by a nonlinear transformation, which does not necessarily have an

explicit form. Kernel spaces are a popular concept in the area of machine learning where

they are used for data classification tasks that would be difficult to perform in the original

data space [71]. Kernel functions, being inner products, can be used to determine similarity

or distances between data members in kernel spaces. This property of kernel functions is

particularly important in the analysis of both structured and unstructured data, such as

graphs and text, and has resulted in the development of a variety of specialized kernel

functions for such data [65, 112]. Kernel functions are also used for visualizing data in

kernel spaces using methods such as multidimensional scaling (MDS) and kernel principal

component analysis (KPCA) [3, 57, 78]. These visualization approaches also suffer from

the issue of inaccurate representation of ordering in low-dimensional embeddings of data,
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which was discussed in Chapter 6.

Although the technique introduced in Chapter 6 is able to correctly convey order struc-

ture of data in high-dimensional spaces using data depth, correctly visualizing data in

kernel spaces remains challenging due to the lack of an effective method to compute data

depth in such spaces. Kernel spaces are often very high-dimensional spaces, and may

not necessarily specify information regarding coordinate axes; data in kernel spaces are

typically expressed implicitly using kernel functions. These properties make it infeasible

to compute depth for data in such spaces using state-of-the-art methods such as spatial

depth [98], half-space depth [108], simplicial depth [62], and functional band depth [66]

(see Chapter 6).

Half-space depth can be formulated in terms of inner products. However, half-space

depth is expensive to compute in high dimensions. The computational complexity of

half-space depth is O(n(d−1)log(n)), where n is the number of points in the ensemble and d

is the dimension of the space of points. In very high-dimensional spaces, half-space depth

is also challenged by the high separability of data leading to a lowest possible depth value

for most, if not all, data members. Although simplicial depth can also be formulated in

terms of inner products, it is also challenged in high dimensions due to large the number

of points (d + 1) needed to form simplices in high dimensions. The large number of

data points required for computing a sufficient number of simplices and the associated

computations for effectively determining depth make simplicial depth difficult for data in

very high-dimensional spaces.

Additionally, simplicial depth in high-dimensional spaces also suffers due to the curse

of dimensionality [53]. As the dimension of the space increases, the proportion of volume

of space contained within a simplex with respect to the bounding rectangle drops rapidly.

This reduction in volume proportion inside a simplex leads to an increased probability

for a randomly chosen simplex band to not contain any other point, resulting in a loss of

discriminative ability of simplicial depth in such high-dimensional spaces. This issue can

be mitigated if the data are intrinsically limited to a lower dimensional subspace; however,

that may not always be the case.

On the other hand, although functional depth can handle data in very high-dimensional

spaces, its reliance on axis-aligned partitions of space (axis-aligned rectangles) reduces
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its effectiveness in capturing the anisotropic structure of data. Furthermore, it can be

challenging to compute functional depth in kernel spaces with no explicit information

regarding data coordinates and coordinate axes. Although we can obtain obtain coordinate

information with respect to a subspace using kernel principal component analysis [95],

such coordinates are highly sensitive to outliers in the data, in turn affecting the robustness

of functional depth with regard to outliers. In the case of distance-based methods such as

L2 depth, although they can be computed efficiently in kernel spaces, they are limited in

their ability to capture the structure of data (see Section 2.2.1).

This chapter presents a novel method to compute center-outward order statistics in

high-dimensional kernel spaces. The method overcomes the limitations of existing data

depth methods in kernel spaces. In particular, it effectively captures the structure of the

data, and can be computed using only inner products for data in kernel spaces. The

proposed method, called ellipse band depth, is a type of band-based method to compute data

depth and relies on ellipse-shaped bands, called ellipse band, to capture the structure of data

(see Section 2.2.1). The rest of this chapter includes a description of the method, results

using synthetic and real data sets, and a discussion about the properties and limitations of

the proposed method.

7.1 Ellipse Band Depth
This section introduces notions of ellipse band and ellipse band depth, and describes a

method to compute ellipse band depth for points in high-dimensional spaces using only

inner product information.

An ellipse in R2 can be defined as a curve surrounding two focal points such that the

sum of distances to the two focal points is constant for every point on the curve. To define

the ellipse band in R2, we consider two points, {xa, xb} ∈ R2, and a scalar parameter ε

such that ε > 1. We determine a point, x ∈ R2, to be within an ellipse band, eB[·], formed

by {xa, xb} if the following condition holds:

x ∈ eB[xa, xb] ⇐⇒ d(x, xa) + d(x, xb) ≤ εd(xa, xb), (7.1)

where d(·) denotes the Euclidean distance between two points. Here {xa, xb} are the foci of

an ellipse and ε determines its eccentricity. For higher dimensions (d > 2), this definition

of the ellipse band remains the same. In such cases, a point x is considered to be inside a
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band if it falls within an ellipse described by (7.1) on any 2D subspace containing {xa, xb}.

In order to compute ellipse band depth using only inner product information, we simply

need to compute the distances in (7.1) from inner product information using the following

equation:

d(p, q) =
(
〈p, p〉+ 〈q, q〉 − 2× 〈p, q〉

) 1
2 , (7.2)

where 〈·, ·〉 denotes the inner product.

The formulation of ellipse band depth from ellipse band proceeds in a manner that is

similar to the formulation of simplicial depth and functional band depth from simplicial

and functional bands, respectively (see Figure 7.1). Let X be a probability distribution over

points in R2. Let {xa, xb} be two data points chosen independently from X, and ε any value

such that ε > 1. Then, the ellipse band depth of any point x ∈ Rd with respect to X is the

probability of x falling inside the ellipse band described by {xa, xb} and ε, which can be

stated as

eBD(x; X) = Prob
[
x ∈ eB[xa, xb]

]
. (7.3)

Given a set of points X = {x1, . . . , xn} ∈ Rd that are sampled from a random variable

X ∈ Rd, ellipse band depth can be empirically computed as follows:

eB[x;X ] = 1
n ∑

xa,xb∈X
Λ(x, xa, xb), (7.4)

where Λ is an indicator variable such that

(a) (b) (c)

Figure 7.1. Bands used by three different notions of data depth. (a) Simplicial, (b)
functional, and (c) ellipse bands are formed by a set of three points in R2 that are marked
in red. Note that three ellipse bands are shown, one for each pair of points in the set.
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Λ =

{
1 if x ∈ eB[xa, xb]

0 if x /∈ eB[xa, xb]
. (7.5)

7.2 Results
This section contains results of ellipse band depth for synthetic and real data sets. This

section also includes results using simplicial depth and L2 depth for comparison. The L2

distance in kernel space is computed using (7.2). All data-depth values are normalized to

lie in the range [0, 1].

7.2.1 Synthetic 2D Data

The first result uses an angularly symmetric bimodal distribution. This distribution

consists of two anisotropic normal distributions with means that are separated vertically

(see Figure 7.2a). Figure 7.2b and Figure 7.2c show heatmaps of simplicial and ellipse band

depth, respectively, for points on a grid with respect to points sampled from the bimodal

distribution. We notice that both notions of depth provide visually similar results for this

data set, with the highest depth values being evaluated between the two modes.

(a) (b)

(c)

Figure 7.2. Comparison of simplicial depth and ellipse band-depth with synthetic 2D data.
(a) An angularly symmetric point distribution. (b) Simplicial depth heatmap. (c) Ellipse
band depth heatmap.
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7.2.2 Synthetic 3D Data

The second result comes from projecting points sampled from a 3D, anisotropic normal

distribution onto a 2D plane. Figure 7.3a and Figure 7.3b show the 2D projections of the

data using MDS. Circle sizes indicate the simplicial depth and ellipse depth, respectively,

of points in the original 3D space. We can make a few observations. First, we see that the

MDS layout does not preserve the order structure with respect to either simplicial depth

or ellipse band depth. For example, in Figure 7.3a and Figure 7.3b, point 18 (marked by

red arrow) seems to be surrounded by points that are more central in the original space.

Second, we observe a similarity between the data-depth values assigned to points by

simplicial depth and ellipse band depth with respect to the relative magnitude of centrality

values.

Figure 7.3c and Figure 7.3d show the field overlay plots (described in Chapter 6) for

the data using simplicial and ellipse band depth, respectively. Here we notice a similarity

in the monotonic fields arising from the similarity in the corresponding data-depth values.

This similarity indicates that ellipse band depth could be used in place of the simplicial

band depth for depth-based based visualizations such as field overlay plots, which makes

ellipse band depth particularly attractive for visualizing data in kernel spaces, where com-

puting simplicial band depth could be problematic due to reasons discussed earlier in this

chapter.

Figure 7.3c, Figure 7.3d, and Figure 7.3e show field overlay plots for the data using

ellipse band depth with different values of parameter ε. A lower ε value in Figure 7.3e

causes a loss in discriminative ability that can be inferred by observing the similar depth

values of the most central members. On the other hand, a higher ε value in Figure 7.3f also

causes a loss in discriminative ability that is evident from generally more similar depth

values and the smoother monotonic field in the background.

7.2.3 Chemicals in Kernel Space

The final result displays the similarity between a set of chemical compounds from

the MUTAG data set [24]. This set contains 63 compounds that have been identified

as nonmutagenic. We use a graph kernel, called a propagation kernel, to determine the

similarity between the molecules based on their chemical structure [80]. The similarity
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3. Visualizations of a 3D anisotropic multivariate normal distribution. (a) MDS
projection with circle size indicating simplicial depth, (b) MDS projection with circle size
indicating ellipse band depth, (c) field overlay plot from Chapter 6 using simplicial depth,
and field overlay plots using ellipse band depth with (d) ε = 1.1, (e) ε = 1.01, and (f)
ε = 1.5.
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values between chemicals are used to obtain a 2D MDS embedding of the data set as seen in

Figure 7.4a and Figure 7.4b. Circle sizes indicate l2 distance depth and ellipse band depth,

respectively, in the kernel space. Figure 7.4c and Figure 7.4d show the field overly plots for

the chemical data set using l2 distance depth and ellipse band depth values, respectively.

We notice that the contours of the monotonic field with ellipse band depth have a more

irregular structure when compared to contours with l2 distance depth, which are smooth

and coherent with the MDS embedding. Such a difference in regularity of monotonic fields

indicates that the ellipse band depth is able to capture information about the structure of

(a) (b)

(c) (d)

Figure 7.4. Similarity of chemical molecules in the MUTAG dataset. (a) MDS visualization
with circle size encoding distance depth, (b) MDS visualization with circle size encoding
ellipse band depth, (c) field overlay plot using distance depth, and (d) field overlay plot
using ellipse band depth.
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the data in the kernel space that is missed by l2 distance depth.

7.3 Discussion
The proposed ellipse-band-depth method has several properties that make it an attrac-

tive addition to the repertoire of data-depth methods. First, it is easily computed using

inner products. Second, it is effective in very high-dimensional spaces since the ellipse

band always spans volume in all dimensions. Third, the ellipse band can better capture

the correlation in the data than the rectangle band, which is used for computing functional

depth. This enhanced ability to capture shape is because the ellipse band can tightly fit the

data regardless of the positions of the points with regard to the coordinate axes. Finally,

the ellipse band depth is simple and fast to compute.

Despite the advantages of the proposed method, areas remain that require further

investigation. The desirable properties of data depth have not yet been established for

ellipse band depth and remain an active area of research (see Section 2.2). Although

a rigorous proof for the monotonicity property has not been established yet, empirical

results do indicate that the property holds in the case of ellipse band depth (see Figure 7.5).

(a) (b)

(c)

Figure 7.5. Simplicial and ellipse band depth along center-outward rays. Empirical results
for both methods indicate monotonic drop in depth value, barring some sample noise in
case of simplicial depth. (a) Direction of rays traveling away from the center, (b) simplicial
depth, and (c) ellipse band depth along the rays.
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Another issue that is still unresolved is estimation of the parameter ε. This parameter

determines the eccentricity or shape of the ellipse band. Although too small a value would

lead to thin ellipses that could fail to contain any points in high dimensions, too large a

value would lead to a loss of structure of the ellipse band; both cases leading to a loss

in the ability of ellipse band depth to discriminate between points with regard to their

centrality in the data set.

There are a variety of possible solutions for determining an appropriate ε with regard

to a particular data set. For example, one such approach would be to use statistics such

as average nearest neighbor distance in the data set to ensure that the ellipse bands are

wide enough to have a high probability of containing nearby points. Another approach

to set ε involves sampling an additional point for each ellipse band and adjusting the ε

such that this point touches the boundary of the ellipse band. Although these methods to

determine ε would could possibly affect the behavior of the proposed epsilon band depth

method, analysis of such effects is a topic for future work, and out of the scope of the

present chapter.



CHAPTER 8

DISCUSSION AND FUTURE WORK

This dissertation tackles the problem of visualizing several different kinds of data types

that can be broadly classified into either ensemble data or graphs. The common theme

underlying the methods introduced in this dissertation is quantification and visualization

of order structure in data. In both kinds of data, ensembles and graphs, we consider data

to be composed of a collection of individual members, which can be complex entities

such as 3D shapes in the case of ensemble data, or nodes in the case of a graph. The

methods in this dissertation rely on a family of descriptive statistical methods, known as

data depth, to determine the centrality of members in the data. Based on data depth, the

most central members are considered to be most representative of the data whereas least

central members are considered to be most atypical or outlying with respect to the data set.

Typical and outlying members as well as the variability among all members are considered

important features in many applications. The visualization methods introduced in this

dissertation highlight such important features for different types of data. These data types

include ensembles of 3D shapes and paths on a graph, which are relevant for applica-

tions such as understanding the typical structure of brain anatomy across populations in

medical imaging (Chapter 3) and identifying anomalous packet paths in Internet routing

(Chapter 4).

The use of data depth in visualizations to summarize data is not new; in fact, the

well-known Tukey boxplot is an example of such a visualization that was introduced

decades ago and continues to be widely used. The novelty of the work in this disserta-

tion is in introducing more effective methods to determine data depth, and expanding

the scope of data types and applications that can be tackled using depth-based visual-

izations. A key contribution of this dissertation with regard to novel data-depth meth-

ods is the development of the path-band-depth method to determine center-outward order
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statistics for path ensembles on a graph (Chapter 4). The path-band-depth method is

able to capture correlation patterns that are missed by existing methods for determining

center-outwardness for paths. Another novel data-depth method introduced is the ellipse

band depth with several advantages over existing methods for determining the centrality of

points in high-dimensional spaces (Chapter 7).

Apart from novel data-depth methods, another key contribution of this dissertation

is the development of visualization techniques for various data types that convey key fea-

tures of data by taking advantage of existing and proposed data-depth methods. Chapter 4,

Chapter 5, and Chapter 6 introduce such visualization techniques for ensembles of paths

on graphs, nodes on graphs, and point ensembles in high-dimensional spaces, respectively.

These visualizations highlight the key members in the data while also providing addi-

tional context in terms of variability (paths and high-dimensional points) or relationships

between members (between nodes on a graph).

Finally, this dissertation also demonstrates the utility of the data-depth-based visu-

alizations in various real applications. Chapter 3 shows the advantages of depth-based

visualization, specifically, a 3D extension of the contour boxplot, for the application of

evaluating alignment of 3D brain images in the context of medical imaging. Chapter 4,

Chapter 5, and Chapter 6 include examples from various real application domains such as

transport planning, social networks, and health care. Although the methods proposed in

this dissertation have several advantages, they also have certain limitations. The rest of this

chapter discusses those limitations, possible options in order to overcome the limitations,

and a few additional directions for future work.

8.1 Discussion
We now look at a few limitations that we need to be aware of while using the proposed

methods and planning future directions of work. Although 3D contour boxplots are ef-

fective in summarizing ensemble of 3D shapes, they suffer from the known problem of

occlusion in 3D, which may lead to misunderstanding about the global nature of analysis

(determination of key members is done using 3D volume analysis, although the results are

visible for only a single cut plane at any instance). One possible solution to mitigate this

issue is to make use of the transparency/alpha channels for rendering the parts of contour
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boxplots that do not intersect the cut plane, including the clipped portion, so that the entire

structure of the inner members and bands is always visible. This additional context could

be a cue that the key features are precomputed and not dependent on the orientation of

the cut planes.

Occlusion is also an issue for 2D embedding methods introduced in this dissertation

when dealing with large numbers of data members (Chapter 5 and Chapter 6). Fur-

thermore, the computational cost of computing the thin plate spline for determining the

embedding is n3 where n is the number of data members. One option to address this issue

is to compute the spline using a randomly sampled subset of data members. In the case

of path boxplots, the computational cost of dealing with ensembles with a large number

of paths is high. Specifically, the cost of the path alignment step for determining path

band depth increases exponentially with the number of paths (see Chapter 4). In order to

address this problem, we use an approximation of aligning subsets of paths rather than

aligning all paths at once. A limitation of this method is that a theoretical error bound on

the quality of approximate path band depth values is still unknown.

In the case of ellipse band depth, more work is needed in order to demonstrate the

utility of the method in real-world applications. In particular, it remains to be shown

whether ellipse band depth exhibits desirable properties of data-depth methods such as

monotonicity, maximum at center, and zero at infinity (see Section 2.2). Also, the effec-

tiveness of the ellipse band depth depends on careful selection of the parameter ε, which

determines the eccentricity of the ellipse bands. Further work is required to understand

the impact of various methods of automatically determining ε based on the data. Addi-

tionally, in the current formulation of epsilon band depth, a large value of ε would lead

to ellipse bands that protrude much beyond the region between the points forming the

band, particularly along the direction of the major axis. This protrusion of bands can lead

to nonzero depth values for points outside the convex hull of the distribution, which is

a characteristic seen in less discriminative measures of data depth such as distance-based

and functional depth. A possible way to improve the discriminative ability of ellipse band

depth would be to scale the ellipse band to have the points determining the ellipse band to

fall on the boundary of ellipse (where the boundary intersects with the major axis) rather

than inside the ellipse (at foci).
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8.2 Future Work
There are many interesting avenues for further work that would complement the work

in this dissertation. In Chapter 3, we saw the 3D contour boxplot is useful for evaluating

alignment of brain MRI images in brain atlases. Integration of the 3D contour boxplot

pipeline with existing atlas construction software could be valuable for researchers who

work with atlases. In the case of anisotropic radial layout (Chapter 5) and order aware

projection (OAP) (Chapter 6), theoretical guarantees with regard to the convergence of the

optimization process as well as more computationally efficient approaches, on the lines of

SMACOF algorithm [58], for arriving at a solution would be useful when handling real

data sets. Even for path band depth (Chapter 4) and ellipse band depth (Chapter 7), more

results on theoretical guarantees would be useful. For example, an interesting direction

for theoretical work includes determining error bounds on approximate solutions and

establishing desirable properties of data depth in the case of path band depth and ellipse

band depth, respectively.

In addition to extensions to the proposed methods, a few new research directions also

seem interesting in the context of this dissertation. One particularly important type of data

that is not tackled in this dissertation is ensembles of aligned graphs. In such ensembles, all

graphs share a common vertex set, and members of the ensemble are independent samples

from some stochastic, generative process (e.g., probability distribution) on the edges and

the edge weights. Although graph ensembles can be visualized in terms of similarity

between graphs by using methods introduced in Chapter 6 and Chapter 7, oftentimes it

is necessary to understand graph ensembles in the context of the connectivity structure

of graphs. Such an understanding of graph ensembles is particularly important in the do-

main of neuroscience. Neuroscientists use resting-state functional MRI (fMRI) data to infer

correlations in blood flow between brain regions that are represented as functional graphs.

In functional graphs of the brain, vertices represent individual brain regions and edges

connect regions with a high correlation in blood flow patterns [87, 104]. Understanding

ensembles of such graphs is important for comparing the general brain structures across

different populations groups such as healthy individuals and Alzheimer’s patients [5].

Existing methods to visualize aligned graph ensembles include the heatmap [14] and

the cell histogram [121], which fail to capture correlations across edges (see Figure 8.1).
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(a) (b)

Figure 8.1. Existing methods to visualize aligned graph ensembles. (a) Adjacency matrix
heatmaps and (b) cell histogram. In both visualizations, each cell summarizes the weights
on an edge (between specific pair of nodes) across an entire ensemble of graphs. Further-
more, the encodings in each cell are determined independent of edges corresponding to
other cells.

Some other data types that are of interest with regard to future work on data-depth-based

visualization include ensembles of trees [6] and 3D scalar fields.

Another important direction for future work is to determine data depth on manifolds.

The existing geometric data-depth measures that are used in Chapter 6 for preserving cen-

trality lower dimensional embeddings do not consider any manifold structure and could

cause significant distortion of distances in the embedding if combined with manifold-

based dimensionality reduction methods. Manifold-based measures of data depth could

complement manifold-based dimensionality reduction methods such as isomap [105] and

t-SNE [68] to preserve order structure with regard to the manifold.



APPENDIX

NAME ASSOCIATIONS FOR NODES IN

VISUALIZATIONS IN CHAPTER 5
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A.1 Name Associations for Nodes in the Terrorist Network
(Figure 5.4)

Node ID Name
0 Jamal Zougam
1 Mohamed Bekkali
2 Mohamed Chaoui
3 Vinay Kholy
4 Suresh Kumar
5 Mohamed Chedadi
6 Imad Eddin Barakat
7 Abdelai Benyaich
8 Abu Abderrahame
9 Omar Dhegayes
10 Amer Aii
11 Abu Musad Alsakaoui
12 Mohamed Atta
13 Rami Binalshibh
14 Mohamed Belfatmi
15 Said Bahaji
16 Al Amrous
17 Galeb Kalaje
18 Abderrahim Zbakh
19 Farid Oulad Ali
20 Jos Emilio Sure
21 Khalid Ouled Akcha
22 Rafa Zuher
23 Naima Oulad Akcha
24 Abdelkarim el Mejjati
25 Abdelhalak Bentasser
26 Anwar Adnan Ahmad
27 Basel Ghayoun
28 Faisal Alluch
29 S B Abdelmajid Fakhet
30 Jamal Ahmidan
31 Said Ahmidan
32 Hamid Ahmidan
33 Mustafa Ahmidan
34 Antonio Toro

Node ID Name
35 Mohamed Oulad Akcha
36 Rachid Oulad Akcha
37 Mamoun Darkaanli
38 Fouad El Morabit Anghar
39 Abdeluahid Berrak
40 Said Berrak
41 Waanid Altaraki Almasri
42 Abddenabi Koujma
43 Otman El Gnaut
44 Abdelilah el Fouad
45 Mohamad Bard Ddin Akkab
46 Abu Zubaidah
47 Sanel Sjekirika
48 Parlindumgan Siregar
49 El Hemir
50 Anuar Asri Rifaat
51 Rachid Adli
52 Ghasoub Al Albrash
53 Said Chedadi
54 Mohamed Bahaiah
55 Taysir Alouny
56 OM Othman Abu Qutada
57 Shakur
58 Driss Chebli
59 Abdul Fatal
60 Mohamed El Egipcio
61 Nasredine Boushoa
62 Semaan Gaby Eid
63 Emilio Llamo
64 Ivan Granados
65 Raul Gonales Pere
66 El Gitanillo
67 Mouta Almallah
68 Mohamed Almallah
69 Yousef Hichman
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A.2 Name Associations for Nodes in Les Miserables Network
(Figure 5.5)

Node ID Name
0 Myriel
1 Napoleon
2 MlleBaptistine
3 MmeMagloire
4 CountessDeLo
5 Geborand
6 Champtercier
7 Cravatte
8 Count
9 OldMan
10 Labarre
11 Valjean
12 Marguerite
13 MmeDeR
14 Isabeau
15 Gervais
16 Tholomyes
17 Listolier
18 Fameuil
19 Blacheville
20 Favourite
21 Dahlia
22 Zephine
23 Fantine
24 MmeThenardier
25 Thenardier

Node ID Name
26 Cosette
27 Javert
28 Fauchelevent
29 Bamatabois
30 Perpetue
31 Simplice
32 Scaufflaire
33 Woman
34 Judge
35 Champmathieu
36 Brevet
37 Chenildieu
38 Cochepaille
39 Pontmercy
40 Boulatruelle
41 Eponine
42 Anelma
43 Woman
44 MotherInnocent
45 Gribier
46 Jondrette
47 MmeBurgon
48 Gavroche
49 Gillenormand
50 Magnon
51 MlleGillenormand

Node ID Name
52 MmePontmercy
53 MlleVaubois
54 LtGillenormand
55 Marius
56 BaronessT
57 Mabeuf
58 Enjolras
59 Combeferre
60 Prouvaire
61 Feuilly
62 Courfeyrac
63 Bahorel
64 Bossuet
65 Joly
66 Grantaire
67 MotherPlutarch
68 Gueulemer
69 Babet
70 Claquesous
71 Montparnasse
72 Toussaint
73 Child
74 Child
75 Brujon
76 MmeHucheloup
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