Collective Communication on Architectures that Support
Simultaneous Communication over Multiple Links

Ernie Chan Robert van de Geijn

Department of Computer Sciences
The University of Texas at Austin

{echan, rvdg}@cs.utexas.edu

Abstract

Traditional collective communication algorithms are desid with

the assumption that a node can communicate with only one othe
node at a time. On new parallel architectures such as the IR B
Gene/L, a node can communicate with multiple nodes simedtan
ously. We have redesigned and reimplemented many of the MPI
collective communication algorithms to take advantagéisfabil-

ity to send simultaneously, including broadcast, redtoefne),
scatter, gather, allgather, reduce-scatter, and alleediwe show
that these new algorithms have lower expected costs thaoréhe
viously known lower bounds based on old models of parallei-co
putation. Results are included comparing their perforreanahe
default implementations in IBM's MPI.

Categories and Subject Descriptors D.m [Softwaré: Miscella-
neous

General Terms Algorithms, Performance

1. Introduction

Extensive research over the past decade has been reportedt on
lective communication and implementations of algorithimsdis-
tributing data between processors [6, 7, 9, 13, 14, 15, 16220
27, 28, 29, 30, 33]. It has been shown that effective communi-
cation algorithms can be implemented with simple yet powerf
techniques [2, 3, 4, 5, 10, 12, 17, 18, 21, 22, 31, 32]. Thode-te
niques inherently assumed that a single node can at mosasend
receive with one other node at a time. That assumption gaee ri
to many algorithms, including bidirectional exchange athons
such as recursive-doubling and halving. Many of those #igos
are optimal for either startup costs, per data transmidsios, or
both, based on old models of parallel computation given tire ¢
straint on communication.

Given the advent of new parallel architectures, new models o
parallel computation can be developed that dramaticaltyedese
the perceived lower bounds of collective communication.N&kee
revisited, redesigned, and reimplemented to take advardathe
new feature where a single node can communicate with meiltipl
nodes simultaneously in order to achieve the new lower b®ofid

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29-31, 2006, New York, New York, USA.
Copyright(© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

William Gropp Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

{gropp, thakur}@mcs.anl.gov

communication. In practice, our implementations show doper
mance increase of up to a factor of eight from IBM’s MPI defaul
collective implementations.

Frequently, collective communication involving all nodsse-
quired. Examples include simple collective communicajasuch
as broadcast, and more complex ones like the various redum-
erations. These operations are generally implementeddyidiual
calls to the send and receive routines.

We use broadcast (Bcast) as a motivating example, whichean b
described as follows: initially a single node, the root, evarvector
of data,z, of lengthn. Upon completion, all nodes own a copy of
z. All operations are illustrated in Fig. 1.

The rest of the paper is organized as follows. In Section 2 we
describe our new model of parallel computationérdimensional
tori where a node can communicate over multiple links. Givext
new model, lower bounds for each collective operation avergi
in Section 3. We present the generalization of several kredlvn
algorithms adapted for the new model in order to achieveaet
bounds in Section 4. Descriptions of the IBM Blue Gene/L and
its compability to communicate to multiple nodes simuliauey
are given in Section 5.1. We provide performance resultshef t
implementations of our new algorithms in Section 5.2.

2. Model of Parallel Computation

To analyze the performance of the presented algorithnsugeful
to assume a simple model of parallel computation. The fafigw
assumptions are made in this report:

Target architectures: The target architectures are distributed-
memory parallel architectures.

Indexing: The parallel architecture contains computational
nodes (nodes hereafter). The nodes are indexedGrmp — 1.
Each node has one computational processor.

Logically fully connected: Any node can send directly to any
other node where a communication network provides autemati
routing.

Topology: The underlying topology is av-dimensional torus.
Each node is directly connected to each of it¥ Dearest
neighbors where two are on opposing sides of a dimensional
axis.

Communicating between nodesAt any given time, a single node
can sendr receive messages from\2other nodes. A single
node can do seimultaneouslynly if each of the messages are
sent or received on each of 2éV different links.

Cost of communication: The cost of sending a message between
two nodes will be modeled hy+ng3, in the absence of network
conflicts. Here o and 3 respectively represent the message

[Operation || Before | After
Node O | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Broadcast
Reduce(Node O | Node 1 | Node 2 | Node 3 Node O | Node 1 | Node 2 | Node 3
: (0) (€3] (2) (3) 2D
t0-one) T T T T Z] x | | |
Node O | Node 1 | Node 2 | Node 3 Node O | Node 1 | Node 2 | Node 3
o) Zo
Scatter 1 1
T2 2
T3 3
Node O | Node 1 | Node 2 | Node 3 Node O | Node 1 | Node 2 | Node 3
o) Zo
Gather 1 1
T2 2
T3 T3
Node O | Node 1 | Node 2 | Node 3 Node O | Node 1 | Node 2 | Node 3
zo xo zo xo zo
Allgather T1 T1 T1 1 T1
T2 x2 T2 2 2
T3 T3 T3 T3 T3
Node 0 | Node 1 | Node 2 | Node 3 Node(Q) Nodel | Node2 | Node3
0 1 2 3 J
N G R R A N
Reduce- mgo) zgl) a:?) mgP’) Z]- $1] ‘
scatter wg’) gcgl) w;Z) w;‘%) 3, x;])
0 1 2 3 : i
mg) xg) mg) mg) jmé’)
Node O | Node 1 | Node 2 | Node 3 NodeO | Nodel | Node2 | Node3
Allreduce 2 ey e 203 5,00 | %, 20 [5,20 | 5, a0

Figure 1. Collective communications considered in this paper.

startup time and per data transmission time, arid the total
number of bytes communicated.

Network conflicts: The path between two communicating nodes,
determined by the topology and the routing algorithm, is com
pletely occupied. Therefore, if some link in the commurimat

path is occupied by two or more nodes, a network conflict oc-

curs. This extra cost is modeled with+ kn8 wherek is the
maximum over all links of the number of conflicts on the links.

Cost of computation: The cost required to perform an arithmetic
operation is denoted by.

3. Lower Bounds

Before discussing collective communication algorithmss iuse-
ful to present lower bounds on the time required to performmn
eration in order to to better gauge the algorithms. In thigise,
we give informal arguments to derive these lower bounds. We w
distinguish three components of communication cost: tetugsto

latency, bandwidth, and computation. Lower bounds arengiue
Table 1.

Latency: The lower bound on latency is derived by the simple
observation that for all collective communications at tesase
node has data that must somehow arrive at all other nodes. In
our model, at each step we can send nodes.

Computation: Only the reduction operations require computa-
tion. The computation involved would requife — 1)n opera-
tions if executed on a single node or tirffre— 1)n~y. Distribut-
ing this computation equally among the nodes reduces thee tim
to P’%lm under ideal circumstances. Hence the lower bound.

Bandwidth: For broadcast and reduce(-to-one), the root node
must either send or receiveitems. The cost of this operation is
bounded below b% because each node can send or receive to
2N other nodesimultaneouslyFor the gather and scatter, the
root node must either receive or seﬁgln items, with a cost

of at Ieastpp%l%. The same is the case for all nodes during

[Communication || Latency | Bandwidth [Computation|
Broadcast [logan+1(p)]a Iy -
Reduce(-to-one)| [logan+1(p)]e N i)
Scatter [logan+1(p)]a p,%l N -
Gather [logan+1(p)] p;1 I -
Allgather [logan+1(p)]a p,%l N -
Reduce-scatter || [logan11(p)]a p,%l = p%"”’
Allreduce [Togan+1(p)]a | 222358 Lo

Table 1. Lower bounds for the different components of communicatiost.

Node 0| Node 1| Node 2| Node 3

Node 0| Node 1| Node 2| Node 3

Zo
1
2
T3

Tro —
1 —
T2 —
T3 —

Step 1

Node 0| Node 1| Node 2| Node 3

Node 0| Node 1| Node 2| Node 3

— To To —
— 1 Tr1 —
— T2 T2 —
— T3 T3 —
Step 2

zo xo zo xo
r1 1 1 1
T2 T2 T2 T2
T3 T3 T3 T3

Figure 2. Minimum-spanning tree algorithm for broadcast.

allgather and reduce-scatter. Allreduce is somewhat nmre ¢
plicated.If the lower bound on computation is to be achieved,
one can argue thd=n items must leave each node, a#ghn

items must be received by each node after the computation is

completed for a total cost of at least—1 22,
p

4. Generalization of Communication Algorithms

Depending on the amount of data involved in a collective comm
nication, the strategy for reducing the cost of the openatiiffers.
When the amount of data is small, the cost of initiating mgssa
a, tends to dominate, and algorithms should strive to redhise t
cost. In other words, the lower bound on the latency in Talile-1
comes the limiting factor. When the amount of data is large, t
cost per item sent and/or computgtland/or, becomes the lim-
iting factors. In this case the lower bound due to bandwiditiar
computation in Table 1 is the limiting factor.

There are several classes of algorithms for collective comim
cation, but we concentrate on these two cases: “short+vatgjo-
rithms” and “long-vector algorithms.” The minimum-spangitree
and bucket algorithms represent the short- and long-vesttm-
rithms, respectively. These algorithms were developedifpally

where each contributes the cost of one lateag¢yp the total cost of
the algorithm. We present the generalization of the MST ritlym
that is bounded b (logan+1(p)) on N-dimensional tori.

4.1.1 Original MST Algorithm

On an arbitrary number of nodes, the MST algorithm can be de-
scribed as follows. Viewing the nodes as a linear arrayiitpart
this network into (roughly) two disjoint subnetworks. Se¢hd data
from the root to some node, the destination, in the part ohtite
work of which the root is not a member. Recursively continue i
the two separate subnetworks, with the original root anditsti-
nation as roots for their respective subnetworks. Thidustilated

in Fig. 2 for broadcast. The cost of this algorithm is

TMSTB:‘,ast (pa TL) = |—10g2(p)-| (CY + nﬁ)

The MST algorithm operates as a directed graph forming a tree
with one incoming and one outgoing edge at each vertex. The
height of this tree i$log, (p)], hence the number of stages.

4.1.2 MST onN-Dimensional Meshes
The original MST algorithm assumed that the system of nodes

with the assumption that a node can only send and receive fromwas a linear array. We can generalize the MST algorithnVen

one other node at a time. We present generalizations of thiese
gorithms onN-dimensional tori where each node can send b
other nodes simultaneously.

4.1 Minimum-Spanning Tree Algorithm

The minimum-spanning tree (MST) algorithm is used for thersh
vector algorithms because it organizes communicationgatbe
edges of a minimum-spanning tree that cover the nodes ieglolv
in the communication. The algorithm requirés(log(p)) stages

dimensional meshes. We assume that the topology is a mesh as
opposed to a torus for this algorithm since no messages eed t
be sent around a ring of any particular dimensional axis. e a
assume that we can send or receNenessages simultaneously as
long as each message is sent along different dimensional bxe
the next section we further generalize this algorithm tagerthe
two opposing nodes on each dimensional axis.

Our goal is to partitiorp nodes intoN + 1 separate partitions
in order to form a tree with a height ¢fog ;(p)]. One simple

© 2 3 3
415 6 7 7
8 9|10 11 11
12 13 14 15 15

0|1 2|3
N

4= -7

8 10| 11
¥

12 | 13 14 15

Figure 3. Left: Simple partitioning of a 4x 4 mesh into three
partitions where node 0 is the root sending to two other nodes
Right: Partitioning the mesh using our generalized alfarit

approach to partition the nodes is to divjgby N +1. Even though
this approach is relatively simple to implement, data mgssa
might not be sent simultaneously when using this algoritiive.
are given the constraint that sending simultaneously cearanly

by saturating the outgoingV links from a node. We illustrate the
partitioning of sixteen nodes in ax 4 mesh in the left of Fig. 3.
With the first node as the root, given an automatic and usually
nondeterministic message routing in this disjointed parting,
sending simultaneously may not be facilitated. In our exarbpth
data messages are routed through node 1, thereby leading to
network conflict.

Another naive approach to partitioning is to recursivelipdit
vide the mesh in half along each dimension. This approacitese
an unbalancedV-ary tree with the maximum height ¢fog,(p)]
because it is bounded by the first subdivision of the meshin ha
This approach does have the advantage of creating sepaitate c
partitions that can facilitate sending simultaneously,tiye cost of
this algorithm is no better than the original MST algorithm.

To getN + 1 partitions of roughly equal size, we simply divide
the mesh by partitioning off nodes from each dimension by a
decrementing counter starting froid + 1. This partitioning is
illustrated in the right of Fig. 3. In our example, we are give
two-dimensional mesh, so divide the first dimension by three
partition off one row from the mesh. In the remaining threesp
we decrement our counter and divide the second dimensiondy t
to partition off two columns, which gives three partitiorfszes 3
x 2,3x 2,and 1x 4.

D is an orderedV-tuple representing the number of nodes in
each dimension of the mesh, ahd represents the partition along
theith dimension where the root does not reside. So the paiitijon
is described by

for(i=1:N)
for(j=1:N)
if (j>1)
D} = D;
elseif(y < 1)
Di =D; — D!
else
Di=D;/(N+2—1)
where
[IY,Di=pand0 <i < N,D; >1and|D| = N

This partitioning does not give the entire algorithm, buiradexing
of nodes is derived from each partitioning Bf A full description
of the algorithm would nearly need the actual code becausigeof
many complicated cases arising from the integer arithmetic

Figure 4. Partitioning a 4x 4 torus into five partitions where node
5 is the root sending to four other nodes simultaneously.

The MST has a maximum and average heighflog v ; (p)].

The number of nodes in each partition is not as even as simply
dividing by N + 1, so the average height is a rough approximation,
but sending simultaneously is almost assured. Reducingoteea
dimensional mesh, this algorithm is the original MST altjori.

In order to send to any many nodes simultaneously, each parti
tion needs to be as cubic as possible as opposed to elongdpsd s
that eventually get reduced to one dimension. We can singly-p
tion the mesh by the order of the dimensions with the most iode

a{irst.
4.1.3 MST Sending Twice on Each Dimensional Axis

We now deal with sending messages in the two opposing direxti
on each dimensional line. If dealing with a linear array oagain,

the MST algorithm can be performed by dividing the nodes into
three partitions and then sending to the two opposing parst
This may require sending around the ring, so our algorithme no
makes use of the torus. The algorithm is adjusted by

for (i =1:2N)
for(j =1:N)
if (> (—1) mod N +1)
Dj =D,
elseif(j < (i — 1) mod N + 1)
i _ j j+N
Di=D; — D} - D!
else
D} = D;/(2N +2 — 1)

whereD ™" represents the partition along tik dimension on the
opposing side of the root from tHe* partition. The MST algorithm
completes inlog, ()] stages, which attains the lower bound
for latency. We illustrate this partitioning in Fig. 4.

If strictly dealing with a mesh, we can simply adjust the algo
rithm by decrementing the counter fr@W + 1 within the assign-
ment whenj = (¢ — 1) mod N + 1 to start the subdivision by
however many dimensions have the root in a noncentral pasiti
Those dimensions where the root is not in a central positidheo
dimensional line can simply be subdivided in half as oppadsed
three separate partitions along that axis.

4.1.4 Summary

Given anyN-dimensional tori, we can perform the MST algorithm
in [logyny1(p)] Stages instead of jusflog,(p)], which is an
improvement oflog, (2N + 1). As with the original algorithm,
the generalized algorithm also does not incur network asfli
Reduce(-to-one) is implemented in much the same way in sever
where the data is sent to the root.

Node 0| Node 1| Node 2| Node 3

Node 0| Node 1| Node 2| Node 3

zo
T1
T2
T3

zo
1

o —r
T3 —

Step 1

Node 0| Node 1| Node 2| Node 3

Node 0| Node 1| Node 2| Node 3

<— g
T
2
T3 —
Step 2

o
1

Figure 5. Minimum-spanning tree algorithm for scatter.

Node 0| Node 1| Node 2| Node 3 Node 0| Node 1| Node 2| Node 3
To — o Tro —
1 — T1 1 —
Tro — T9 Tro —
T3 — r3 — T3
Step 1 Step 2
Node 0| Node 1| Node 2| Node 3 Node 0| Node 1| Node 2| Node 3
T T To — T Zo zo Zo
1 1 r1 — T1 1 1 1
ro — T2 T2 x2 T2 z2 2
3 r3 — 3 T3 T3 3 3
Step 3

Figure 6. Bucket algorithm for allgather.

4.1.5 Generalized MST Scatter

operation. We generalize this algorithm whe¥ebuckets collect

A scatter can be implemented much like a broadcast using ah Ms dat@ simultaneously.

algorithm, except that at each step of the recursion onlyd#ta
that ultimately must reside in the subnetwork, where théktson

4.2.1 Original Bucket Algorithm

is, needs to be sent from the root to the destination. The one- The bucket algorithm is used to implement either the allgath

dimensional MST scatter algorithm is illustrated in Fig.Usder
the assumption thasg, , , (p) is an integer and all subvectors are
of equal length, the cost of this approach is given by

logon 41 (p)

>

k=1

TMSTScatter(p, n, D) = (a + (2N “+ 1)7,':”6) =

—1n
10g2N+1(p)a + pT %
which attains the lower bound for both latency and bandwidth
Gather can also be implemented much like scatter in revéirse.
MST scatter and gather algorithms are used as both the lony- a
short-vector algorithms since the MST algorithm are optifoa

both components of the cost of communication in these cipesat

4.2 Bucket Algorithm

When implementing long-vector algorithms, the goal is tduee
the and~y terms of the cost. We show that a simple building-block
approach to the development of algorithms again yieldsrilgos
that are, in theory, near-optimal but for ti#leand y terms. The
algorithm we present is often referred to as bucket algorisince

it collects data at each node like a bucket during each stem of

or reduce-scatter. A simple approach to the implementiothef
allgather operation views the nodes as a ring. At each dtemmdes
send data to the node to their right. In this fashion, the sctors
that start on the individual nodes are eventually disteduto all
nodes. The process is illustrated in Fig. 6. Notice thatadhenode
starts with an equal subvector of data, the cost of this ambrds
given by

n
TBucketAllgather (p;n) = (p - 1)(0{ + ;/8) =

(p—1)a+ P21

nf

4.2.2 Bucket onN-Dimensional Tori

We generalize the bucket algorithm A dimensions by gathering
data on each of thé&/ different dimensional lines simultaneously.
The difficulty lies when trying to gather data messages thatat

lie on any dimensional axis as the receiving node. If data oo
was sent to itsV different neighbors at each step, then inherent
conflicts will occur with data arriving at a node from mulgpl
locations. We eliminate this problem by arbitrarily orderiwhere
the data is sent and received. We illustrate this inherenflicoin

8 9 10 11 8 9 10 11
12 13 14 15 12 13 14 15
Step 1 Step 2

Figure 7. Sending data message through two stages of the
generalized bucket algorithm in a» 4 torus where a conflict

4.2.4 Summary

The original bucket algorithm was designed specifically \toic
network conflicts, and the generalized bucket algorithm aad
should be implemented to avoid any network conflicts. When im
plementing reduce-scatter with the generalized bucketdrigfgn,
the lower bound,”,%lm, for the computation component is also
achieved.

Other collective operations can also be derived in simdahf
ion to the broadcast. For example allreduce being impleeadent
with the new generalized MST reduce(-to-one) followed byTMS
broadcast or by the generalized bucket reduce-scattemfed by
bucket allgather [19].

occurs when nodes 1 and 4 try to send the same data to node 5 performance

at the second step.

Here we describe the performance of an implementation of our
algorithms. The architecture on which the implementativese
benchmarked is presented, followed by the results attaiireed

Fig. 7. We resolved the conflict between nodes 1 and 4 by only that architecture.

allowing node 4 to send the data to node 5 at the second step.

The generalization of bidirectional exchange algorithmaat
feasible with this model because of the constraint that ah etep,
data is sent potentially t&v other nodes and received froid
nodes, thus saturating t2V links. The cost of our generalized
bucket algorithm now becomes

D; —

J

d-Nat+2i1s

where
d=YN,D;andVi # j,D; > D;

The bandwidth component is factored Bi{—l because data needs
to be sent only around the ring of the dimension with the most
number of nodes. The data needed to be sent along the buakkt of
other dimensions is done so simultaneously. The latendy-isV
for our algorithm because that many steps are required fodara
message to traverse the entire torus.

The bandwidth component not only is at least twice the lower
bound, but

p—1ng
N

b 1n5 > D 1n5 >
P Dj
since at each step data cannot always be sei¥ toeighboring
nodes because of the conflict described above. Despite dhis ¢
flict our algorithm is an improvement over the original bucke
gorithm.

4.2.3 Derived Long-Vector Broadcast

A long-vector broadcast algorithm can be derived by conmigjra
scatter with an allgather operation. The cost becomes

-1
TrongBeast(p,n) = ([log,(p)] +p — 1o + 2‘1)7115

when using the original one-dimensional algorithms.

By deriving the long-vector broadcast algorithm using fie
dimensional algorithms of MST scatter and bucket allgattier
cost now is

)

Clearly we have reduced both the latency and bandwidth ¢diséo
original derived long-vector broadcast.

D; —1
D,

(Mogon41(P)] +d — N)a + <I;%; 4

All results are presented in logarithmic graphs. The lergfth
data ranges from 8 B to 4 MB, and time in seconds is the unit of
measure. The tests were conducted on 512 nodes within-a8 8
x 8 torus.

5.1 Testbed Architecture

The assumption that a node can send or receive tdmnodes
simultaneouslyis the main departure of this paper from previ-
ous work on collective communication. The IBM Blue Gene/L
(BGI/L) [11] is a new supercomputer architecture that sufspibis
new functionality, but more discussion is needed to evaltla¢
extent of that claim.

BGI/L performs point-to-point communication using B torus
network. One BG/L rack comprises 1024 dual-processor céenpu
nodes divided into two midplanes. A job requested on BGI/L is
given a physicaBD partition that best fits the number of nodes
requested even if the number of nodes does not fill the entire
partition. A job can use the torus topology only if it is extsalion a
midplane or rack. Otherwise smaller partitions are meredgines.

BGI/L also has two modes: coprocessor and virtual node mode.
We deal only with coprocessor mode in our experiments whette b
processors on the node run a single thread. One processtiefian
computation while the other processor handles cache aotyere
and helps route data packets among other things.

We use MPI to implement the collective communication oper-
ations. The MPI implementation on BG/L [1] is an adaptatidn o
the MPICH2 library from Argonne National Laboratory [24,]26
Multiple calls toMPI_Isend facilitate sending simultaneously [23].
Packets are routed by using either a deterministic or antizdap
routing algorithm on an individual basis. Since we cannosle
of which routing algorithm is used for any particular packate
way we try to ensure that a node can send simultaneously to six
other nodes is to send only to nodes that lie along the samendim
sional axis as the sending node. Sending to two or more nbdés t
are not along any axis may lead to network conflicts.

5.1.1 Sending Simultaneously

Attempting to send to multiple nodes simultaneously on Bdes
not take the same amount of time as just sending to one otder no
We represent the extra time to send simultaneously witts a
factor of the overall time to send, so the cost to send simatiasly

is represented by

(a+nB) 1+ (1 —1)7)

Time-max mesh-1 p=512
T

T
= 1 neighbor
== 2 neighbors
_1| | = = =3 neighbors
[| == 4 neighbors
=8 5 neighbors
6 neighbors
102f [——1 neighbor x 6

time —sec—

L
10

10
message size —-bytes—

Time-max mesh-2 p=512
T T

T
= 1 neighbor
== 2 neighbors
_1| | = = =3 neighbors
[| === 4 neighbors
=8 5 neighbors
6 neighbors
102f [——1 neighbor x 6

10°F

. .
° ! ? 10* 10° 10 10

.
10 10°
message size —bytes—

Figure 8. Left: Longest time for unidirectional sending or receivioig a mesh topology. Right: Longest time for bidirectionattenge on

a mesh topology.

Time-max mesh-1 Difference p=512
1.4 T T T T

;
1
BITSGPRY - Zne!ghbors
1.2+ ! \ = = =3 neighbors |4
2 =4 4 neighbors
‘ —8— 5 neighbors
1 \ 6 neighbors | |
%
\
< 08r 3
2 Lx‘\
5]
L X
0.6 \
0.4r \
o2r S :
N Nasron -
0
10° 10' 10° 10° 10" 10° 10° 10’

message size —bytes—

~ Time-max mesh-1 Curve-Fit p=512
10 T T

T
1 neighbor o

— = 2neighbors 3]
— — =3 neighbors
10—2 | | = 4 neighbors
—&— 5 neighbors
6 neighbors

10°

time —sec—

10k

107

10°
10

L
10 10

message size —-bytes—

Figure 9. Left: Values ofr for the longest time for unidirectional sending or recejvan a mesh topology. Right: Curve fitting based on the
experimental values af, 3, andr for unidirectional sending or receiving on a mesh topology.

wherel is the number of nodes to send, ah& 7 < 1. If 7 = 0,
then sending to multiple nodes is free, but i 1, then there is no
benefit from performing simultaneous sends.

Values fora, 3, andr can be found with simple benchmarking.
The longest, shortest, and average times for any node tooserd
ceive with one to six neighbors simultaneously were gatherae

sends and receives are ordered in such a way that all nodes tak

part in sending or receiving with a certain number of neighigp
nodes. We also time bidirection exchange, where each notks se
and receives, as opposed to one or the other, with a diffetent
ber of neighbors simultaneously. We assume an underlyirghme
topology along with the torus in cases where the partitionaafes

is smaller than a midplane. This condition is handled by taits
ing the nodes on the edges of the partition not to send ardwend t
ring of a particular dimension.

The results for the longest time to perform a send or receide a
bidirectional exchange assuming a mesh topology are pexsen
in Fig. 8. Given all the data gathered from our benchmark, the
experimental values of are determined on BG/L and are shown
in the left of Fig. 9 where the baseline for our comparisonghés
time to perform unidirectional sends or receives with omig other

node. We performed curve fitting in the right of Fig. 9 for thisets

of data lengths: 8 to 512 B, 1 to 32 KB, and 64 KB to 4 MB. The
lines in the curve fitting graph represent the cost of comuation
based on the experimental valuexof3, andr superimposed onto
data circles, representing the original data from the gnajie left

of Fig. 8, where we can clearly see a tight relationship.

For the first set of data lengths, 8 to 5127B+= 0.9797 whereas
T = 0.1792 for the third set of data lengths, 64 KB to 4 MB with
unidirectional sending and receiving on a mesh topologe fliist
set corresponds to the use of the eager protocol by the setideo
For greater data lengths, the rendezvous protocol is usetitime
to send to six neighbors simultaneously is less than sixgithe
time to send to one other node.

We note that bidirectional exchange performed with only one
other node is optimized to perform nearly as well as a unitiveal
send or receive when using the rendezvous protocol. Thevalti
«a andg are relatively close with bidirectional exchange and unidi
rectional sends and receives, but the value fnearly double, so
bidirectional exchange does not scale for simultaneousasges.
Thus algorithms such as recursive-doubling and halviigpst-

Timings (ms) Data Lengths

Implementation 1MB [2MB | 4MB
MPI-Bcast 37 45 56
my-bcast-Bucket-old 39 47 58
my-bcast-Bucket-new 36 42 49
MPI-Scatter 4.6 8.8 17
my-scatter-MST-old 3.7 7.1 14
my-scatter-MST-new 3.2 5.6 10
MPI-Allgather 250 280 340
my-allgather-Bucket-old 35 39 45
my-allgather-Bucket-new 33 36 39

Table 2. Timing results for long-vector implementations from 1 to
4 MB in milliseconds.

vide good performance despite not being able to be genedalix
send data simultaneously.

5.2 Results
In the graphs in Table 2 and Fig. 10 we report the followingrear
e The lines labeledIPI are the default implementations of the

Timings (us) Overhead

Implementation $(3) [¢(1) | Ratio
my-bcast-MST 30 0.52 58
my-scatter-MST 520 1.3 400
my-allgather-Bucket | 2300 | 2.8 821

Table 3. Timing results in microseconds and ratios of the over-
head,¢, required for the implementations of the new generalized
and original algorithms.

5.2.2 Scatter

In Table 2 we can clearly see that our new generalized MSTescat
performs quite well for long lengths of data. For short Idrsgof
data, our original and IBM’s implementations of scatterfgen
quite favorably compared to our new generalized scatteauss

of the overhead, which is a factor of four hundred differesicewn

in Table 3. Since we use MST scatter as a building block for the
long-vector broadcast, this is still a significant perfonoa gain.

5.2.3 Allgather

In Table 2 our new generalized bucket allgather sees only a
marginal performance gain for long lengths of data from aigio

operations on the testbed architecture. These are used withna| bucket algorithm. This is due to the following factors:

comparison to our implementations.

e The lines labele®ST are for the implementations of the short-
vector algorithms.

e The lines labele®ucket are for the implementations of the
long-vector algorithms.

e The lines labeled witl1d are for our original implementations
of algorithms that assume a linear array topology. Theselace
used to compare with our new generalized algorithms.

e The lines labeled witlhew are for the implementations of the
new generalized algorithms on a three-dimensional torus.

In Table 3 we present the cost of the overhead in implementing
the new generalized and original algorithms. The overhéad t
mainly consists of calculating indices is denoted dgaywhich is
a constant function of the number of dimensions. For ingtanc
eight arrays of lengthV are used in our implementation of the
new generalized MST broadcasi(3) represents the overhead of
the implementations of the new generalized algorithms edmeer
¢(1) represents the implementations of the original algorithms
These results are found by taking the average time to ex¢cete
implementations without performing any communicatioroasrall
data lengths.

5.2.1 Broadcast
In the left of Fig. 10 we compare implementations of broaticas

¢ Since the bucket algorithm was designed for long data length
the 8 term dominates the cost. Our new generalized algorithm
decreases the bandwidth cost by only a small fraction fram th
original bucket algorithm where both terms asymptotically
approach the bound @(n).

The significant overhead in the new generalized implemiemtat
is over a factor of eight hundred from the original and simple
implementations given in Table 3.

The bucket algorithm assumes the topology is a full torus, bu
our tests were conducted on a midplane. A BG/L rack consists
of 1024 nodes within a 16 8 x 8 torus, so messages in a
midplane can be sent around the ring physically in only two of
the three possible dimensions. Since our algorithm assames
full torus, network conflicts will occur because messages ar
sent around the ring of each dimension at every step.

e Our cost analysis assumes that sending simultaneously up to
2N other nodes costs the same as sending to only one other
node, but we can clearly see that> 0 from our benchmark
results.

We show the factor of eight performance gain between ourémpl
mentation of the bucket allgather and IBM’s default implernae
tion of allgather in the right of Fig. 10. This clearly showglédch

in IBM’s default implementation of allgather.

for short lengths of data, 8 B to 16 KB. Since data messages are5.2.4 Summary

not sent simultaneously on BG/L at data lengths less than 1 KB
the new generalized MST algorithm of broadcast nearly etesila
the original MST algorithm, but the significant overheaduieed

to implement our new generalized algorithe#(3), derogates its
performance compared to the much simpler implementatidgheof
original MST algorithm. Our new implementation gains a ¢aaif

two performance around 2 KB which because of the decreabein t
number of stages from the origindlpg, (p)] MST algorithm.

In Table 2 we compare implementations of broadcast for long
lengths of data, 1 to 4 MB. Even though our new derived long-
vector broadcast does outperform our old long-vector and IB
MPI's implementations, performance gains are bounded By th
limitations of the allgather building block.

We can obtain performance gains with our new generalized- alg
rithms, but significant factors limit that gain. Even thougdtimiza-
tions can be made to our new implementations, we have shatn th
a performance gain aV, three on BG/L, is not attainable because
of inherent limits in the capabilities of the architecturelahe al-
gorithms themselves.

6. Conclusions

Our generalized algorithms make use of the physical unihgrly

N-dimensional torus. We are able to achieve the lower bound
for latency using the MST algorithm. Our MST scatter is also
able to achieve the lower bound for bandwidth, but our bucket

~ BCAST-short p=512
10 T T

T
P |-Bcast

= = my-bcast-MST-old
e My-bcast-MST-new|

10

time —sec—

10°

. .
10° 10° 10
message size —-bytes—

10 10 10

Allgather p=512
10

T T
e \|P|-Allgather
=g my-allgather-Bucket-new

10 ¢

time —sec—

10°F

10°

5 6

. . .
10 10° 10* 10
message size -bytes—

10

Figure 10. Left: Comparing short-vector implementations of broaticeght: Comparing our bucket allgather to IBM’s defaultgiemen-

tation of allgather.

algorithm, and any possible algorithm, cannot achieve theett
bound bandwidth for allgather because of the constraintsuof
model of parallel computation. Despite the lower expectest
of these algorithms, the implementations of these algoisttare

limited by the physical mechanisms of the system and by the

significant overhead needed.
More advanced techniques such as imposing higher-dimeaisio
virtual topologies in order to develop hybrid multidimenisal al-

gorithms can be used on top of these simultaneously sentling a

gorithms for lower performance costs [8]. When the mectmanis
of sending simultaneously becomes decoupled from the gdlysi
topology, simplier techniques such as the divisiorpafodes by
N + 1 for the MST algorithm can be used without penalty.

As part of the current project, we intend to investigateasxill/e

communication on systems with SMP nodes that share more than

one processor. The virtual node mode on the IBM Blue Genel/L fa
cilitates the use of both processors in a node. We are alsconet
vinced that our generalized bucket algorithm is the mostiefit
algorithm, so further study is required to develop an atbarithat
strives to obtain the lower bound for bandwidth in our loregtor
algorithms.

Acknowledgments

This work was supported by the Mathematical, Informatiamg a
Computational Sciences Division subprogram of the OfficAaf
vanced Scientific Computing Research, Office of Science, DeS
partment of Energy, under Contract W-31-109-ENG-38. Wekha
Chris Bischof for giving us access to the Sun SMP machindseat t
University of Aachen.

References

[1] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. @vely,
P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow, &tferman,
B. D. Steinmacher-Burow, W. Gropp, and B. Toonen. Design and
implementation of message-passing services for the BlueelGe
supercomputerBM J. Res. and Dey49(2/3):393-406, March/May
2005.

[2] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. A. van de Gaind
J. Watts. Interprocessor collective communication lipi@ntercom). In
Proceedings of the Scalable High Performance Computingféence
1994 1994.

[3] M. Barnett, R. Littlefield, D. Payne, and R. van de Geijn.n e
efficiency of global combine algorithms for 2-d meshes witbravhole
routing. J. Parallel Distrib. Comput.24:191-201, 1995.

[4] M. Barnett, D. Payne, and R. van de Geijn. Optimal broating
in mesh-connected architectures. Computer Science répoeftl-38,
Univ. of Texas, 1991.

[5] M. Barnett, D. Payne, R. van de Geijn, and J. Watts. Braeatieg on
meshes with wormhole routing. Parallel Distrib. Comput.35(2):111—
122, 1996.

[6] Gregory D. Benson, Cho-Wai Chu, Qing Huang, and Sadik &l&ar.
A comparison of MPICH allgather algorithms on switched ratg. In
Jack Dongarra, Domenico Laforenza, and Salvatore Orlagditors,
Recent Advances in Parallel Virtual Machine and MessagesiRgs
Interface, 10th European PVM/MPI Users’ Group Meetipgges 335—
343. Lecture Notes in Computer Science 2840, Springer,eSdyr
2003.

[7] Massimo Bernaschi, Giulio lannello, and Mario Lauriaxpgrimental
results about MPI collective communication operationsPioceedings
of HPCN99 1999.

[8] Ernie W. Chan, Marcel F. Heimlich, Avi Purkayastha, andbRrt A.
van de Geijn. On optimizing collective communication.Aroceedings
of the 2004 IEEE International Conference on Cluster Cornimgripages
145-155, San Diego, CA, 2004. IEEE.

[9] Graham E. Fagg, Sathish S. Vadhiyar, and Jack J. Dong&GLT:
Automatic collective communications tuning. In Jack DamgaPeter
Kacsuk, and Norbert Podhorszki, editoRecent Advances in Parallel
Virutal Machine and Message Passing Interfaceimber 1908 in
Springer Lecture Notes in Computer Science, pages 354 Sggitember
2000.

[10] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and/alker.
Solving Problems on Concurrent Processarslume |. Prentice Hall,
1988.

[11] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteld. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. éptsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takkend
P. Vranas. Overview of the Blue Gene/L system architectliBé/ J.
Res. and Dey49(2/3):195-212, March/May 2005.

[12] Ching-Tien Ho and S. Lennart Johnsson. Distributedtingu
algorithms for broadcasting and personalized commuoicaiin
hypercubes. IrProceedings of the 1986 International Conference
on Parallel Processingpages 640-648. IEEE, 1986.

[13] S. L. Johnsson and C. T. Ho. Optimum broadcasting ansbpetized
communication in hypercubetEEE Transactions on Computerzages

1249-1268, September 1989.

[14] L. V. Kale, Sameer Kumar, and Krishnan Vardarajan. Arfeavork
for collective personalized communication. Pmoceedings of the 17th
International Parallel and Distributed Processing Symipas (IPDPS
'03), 2003.

[15] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Luskd
J. Bresnahan. Exploiting hierarchy in parallel computefvoeks
to optimize collective operation performance. Mmoceedings of
the Fourteenth International Parallel and Distributed Ressing
Symposium (IPDPS '0pjpages 377—384, 2000.

[16] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and RFA.
Bhoedjang. MagPle: MPI's collective communication opiers
for clustered wide area systems. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP)9pages
131-140. ACM, May 1999.

[17] S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Protpi. In
Sixth Distributed Memory Computing Conference Proceeslipgges
671-677. IEEE Computer Society Press, 1991.

[18] Prasenjit Mitra, David Payne, Lance Shuler, Robert ganGeijn,
and Jerrell Watts. Fast collective communication libgriglease. In
Proceedings of the Intel Supercomputing Users’ Group Meeti995
1995.

[19] D. Payne, L. Shuler, R. van de Geijn, and J. Watts. Sjteéé to
collective communication. unpublished manuscript.

[20] Rolf Rabenseifner and Gerhard Wellein. Communicatord
optimization aspects of parallel programming models onridyb
architectures.International Journal of High-Performance Computing
Applications 17(1):49-62, 2003.

[21] Y. Saad and M.H. Schultz. Data communications in hyplees. J.
Parallel Distrib. Comput, 6:115-135, 1989.

[22] Mohak Shroff and Robert A. van de Geijn. Collmark MPIlegtive
communication benchmark. unpublished manuscript, 2001.

[23] Marc Snir, Steve Otto, Steven Huss-Lederman, David \AlKéf, and
Jack Dongarra.MPI: The Complete Referenceolume 1, The MPI
Core. The MIT Press, 2nd edition, 1998.

[24] Rajeev Thakur and William Gropp. Improving the perfamce of
collective operations in MPICH. IRroceedings of the 10th European
PVM/MPI Users’ Group Conference (Euro PVN/MPI 2008pges
257-267, September 2003.

[25] Rajeev Thakur, William Gropp, and Brian Toonen. Optimg
the synchronization operations in MPI one-sided commuioica
International Journal of High-Performance Computing Apations
19(2):119-128, Summer 2005.

[26] Rajeev Thakur, Rolf Rabenseifner, and William Gropmti®ization
of collective communication operations in MPICHInternational
Journal of High-Performance Computing Applicatiorf$9)1:49-66,
Spring 2005.

[27] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast ctitec
operations using shared and remote memory access protocdlissters.
In Proceedings of the 17th International Parallel and Distried
Processing Symposium (IPDPS '02p03.

[28] Jesper Larason Traff and Andreas Ripke. An optimal dcaat
algorithm adapted to SMP clusters. EuroPVM/MPI 2005, LNCS
3666 pages 48-56, 2005.

[29] Jesper Larason Traff and Andreas Ripke. Optimal brasidfor fully
connected networks. IHPCC 2005, LNCS 372f{ages 45-56, 2005.

[30] Sathish S. Vadhiyar, Graham E. Fagg, and Jack DongAutmati-
cally tuned collective communication. Rroceedings of Supercomput-
ing 200Q Dallas, TX.

[31] Robert van de Geijn. On global combine operatiords.Parallel
Distrib. Comput, 22:324-328, 1994.

[32] Jerrell Watts and Robert van de Geijn. A pipelined bozesd for
multidimensional meshesParallel Processing Letters(2):281-292,
1995.

[33] Thomas Worsch, Ralf Reussner, and Werner Augustin. @l
marking collective MPI operations. In Dieter Kranzimiijlé®eter
Kacsuk, Jack Dongarra, and Jens \olkert, edit®scent Advances
in Parallel Virtual Machine and Message Passing Interfa@th Euro-
pean PVM/MPI Users’ Group Meetingages 271-279. Lecture Notes
in Computer Science 2474, Springer, September 2002.

