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Abstract
Traditional collective communication algorithms are designed with
the assumption that a node can communicate with only one other
node at a time. On new parallel architectures such as the IBM Blue
Gene/L, a node can communicate with multiple nodes simultane-
ously. We have redesigned and reimplemented many of the MPI
collective communication algorithms to take advantage of this abil-
ity to send simultaneously, including broadcast, reduce(-to-one),
scatter, gather, allgather, reduce-scatter, and allreduce. We show
that these new algorithms have lower expected costs than thepre-
viously known lower bounds based on old models of parallel com-
putation. Results are included comparing their performance to the
default implementations in IBM’s MPI.

Categories and Subject Descriptors D.m [Software]: Miscella-
neous

General Terms Algorithms, Performance

1. Introduction
Extensive research over the past decade has been reported oncol-
lective communication and implementations of algorithms for dis-
tributing data between processors [6, 7, 9, 13, 14, 15, 16, 20, 25,
27, 28, 29, 30, 33]. It has been shown that effective communi-
cation algorithms can be implemented with simple yet powerful
techniques [2, 3, 4, 5, 10, 12, 17, 18, 21, 22, 31, 32]. Those tech-
niques inherently assumed that a single node can at most sendand
receive with one other node at a time. That assumption gave rise
to many algorithms, including bidirectional exchange algorithms
such as recursive-doubling and halving. Many of those algorihtms
are optimal for either startup costs, per data transmissiontime, or
both, based on old models of parallel computation given the con-
straint on communication.

Given the advent of new parallel architectures, new models of
parallel computation can be developed that dramatically decrease
the perceived lower bounds of collective communication. Wehave
revisited, redesigned, and reimplemented to take advantage of the
new feature where a single node can communicate with multiple
nodes simultaneously in order to achieve the new lower bounds of
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communication. In practice, our implementations show a perfor-
mance increase of up to a factor of eight from IBM’s MPI default
collective implementations.

Frequently, collective communication involving all nodesis re-
quired. Examples include simple collective communications, such
as broadcast, and more complex ones like the various reduction op-
erations. These operations are generally implemented by individual
calls to the send and receive routines.

We use broadcast (Bcast) as a motivating example, which can be
described as follows: initially a single node, the root, owns a vector
of data,x, of lengthn. Upon completion, all nodes own a copy ofx. All operations are illustrated in Fig. 1.

The rest of the paper is organized as follows. In Section 2 we
describe our new model of parallel computation onN -dimensional
tori where a node can communicate over multiple links. Giventhat
new model, lower bounds for each collective operation are given
in Section 3. We present the generalization of several well-known
algorithms adapted for the new model in order to achieve the lower
bounds in Section 4. Descriptions of the IBM Blue Gene/L and
its compability to communicate to multiple nodes simultaneously
are given in Section 5.1. We provide performance results of the
implementations of our new algorithms in Section 5.2.

2. Model of Parallel Computation
To analyze the performance of the presented algorithms, it is useful
to assume a simple model of parallel computation. The following
assumptions are made in this report:

Target architectures: The target architectures are distributed-
memory parallel architectures.

Indexing: The parallel architecture containsp computational
nodes (nodes hereafter). The nodes are indexed from0 to p�1.
Each node has one computational processor.

Logically fully connected: Any node can send directly to any
other node where a communication network provides automatic
routing.

Topology: The underlying topology is anN -dimensional torus.
Each node is directly connected to each of its 2N nearest
neighbors where two are on opposing sides of a dimensional
axis.

Communicating between nodes:At any given time, a single node
can sendor receive messages from 2N other nodes. A single
node can do sosimultaneouslyonly if each of the messages are
sent or received on each of its2N different links.

Cost of communication: The cost of sending a message between
two nodes will be modeled by�+n�, in the absence of network
conflicts. Here � and � respectively represent the message
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Allgather
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Node 0 Node 1 Node 2 Node 3x(0) x(1) x(2) x(3) Node 0 Node 1 Node 2 Node 3Pj x(j) Pj x(j) Pj x(j) Pj x(j)
Figure 1. Collective communications considered in this paper.

startup time and per data transmission time, andn is the total
number of bytes communicated.

Network conflicts: The path between two communicating nodes,
determined by the topology and the routing algorithm, is com-
pletely occupied. Therefore, if some link in the communication
path is occupied by two or more nodes, a network conflict oc-
curs. This extra cost is modeled with� + kn� wherek is the
maximum over all links of the number of conflicts on the links.

Cost of computation: The cost required to perform an arithmetic
operation is denoted by.

3. Lower Bounds
Before discussing collective communication algorithms, it is use-
ful to present lower bounds on the time required to perform anop-
eration in order to to better gauge the algorithms. In this section,
we give informal arguments to derive these lower bounds. We will
distinguish three components of communication cost: termsdue to

latency, bandwidth, and computation. Lower bounds are given in
Table 1.

Latency: The lower bound on latency is derived by the simple
observation that for all collective communications at least one
node has data that must somehow arrive at all other nodes. In
our model, at each step we can send to2N nodes.

Computation: Only the reduction operations require computa-
tion. The computation involved would require(p� 1)n opera-
tions if executed on a single node or time(p� 1)n. Distribut-
ing this computation equally among the nodes reduces the time
to p�1p n under ideal circumstances. Hence the lower bound.

Bandwidth: For broadcast and reduce(-to-one), the root node
must either send or receiven items. The cost of this operation is
bounded below byn�2N because each node can send or receive to2N other nodessimultaneously. For the gather and scatter, the
root node must either receive or sendp�1p n items, with a cost

of at leastp�1p n�2N . The same is the case for all nodes during



Communication Latency Bandwidth Computation

Broadcast dlog2N+1(p)e� n�2N –
Reduce(-to-one) dlog2N+1(p)e� n�2N p�1p n
Scatter dlog2N+1(p)e� p�1p n�2N –

Gather dlog2N+1(p)e� p�1p n�2N –

Allgather dlog2N+1(p)e� p�1p n�2N –

Reduce-scatter dlog2N+1(p)e� p�1p n�2N p�1p n
Allreduce dlog2N+1(p)e� 2 p�1p n�2N p�1p n

Table 1. Lower bounds for the different components of communicationcost.

Node 0 Node 1 Node 2 Node 3x0x1x2x3 Node 0 Node 1 Node 2 Node 3x0 !x1 !x2 !x3 !
Step 1

Node 0 Node 1 Node 2 Node 3 x0 x0 ! x1 x1 ! x2 x2 ! x3 x3 ! Node 0 Node 1 Node 2 Node 3x0 x0 x0 x0x1 x1 x1 x1x2 x2 x2 x2x3 x3 x3 x3
Step 2

Figure 2. Minimum-spanning tree algorithm for broadcast.

allgather and reduce-scatter. Allreduce is somewhat more com-
plicated.If the lower bound on computation is to be achieved,
one can argue thatp�1p n items must leave each node, andp�1p n
items must be received by each node after the computation is
completed for a total cost of at least2 p�1p n�2N .

4. Generalization of Communication Algorithms
Depending on the amount of data involved in a collective commu-
nication, the strategy for reducing the cost of the operation differs.
When the amount of data is small, the cost of initiating messages,�, tends to dominate, and algorithms should strive to reduce this
cost. In other words, the lower bound on the latency in Table 1be-
comes the limiting factor. When the amount of data is large, the
cost per item sent and/or computed,� and/or, becomes the lim-
iting factors. In this case the lower bound due to bandwidth and/or
computation in Table 1 is the limiting factor.

There are several classes of algorithms for collective communi-
cation, but we concentrate on these two cases: “short-vector algo-
rithms” and “long-vector algorithms.” The minimum-spanning tree
and bucket algorithms represent the short- and long-vectoralgo-
rithms, respectively. These algorithms were developed specifically
with the assumption that a node can only send and receive from
one other node at a time. We present generalizations of thoseal-
gorithms onN -dimensional tori where each node can send to2N
other nodes simultaneously.

4.1 Minimum-Spanning Tree Algorithm

The minimum-spanning tree (MST) algorithm is used for the short-
vector algorithms because it organizes communication along the
edges of a minimum-spanning tree that cover the nodes involved
in the communication. The algorithm requiresO (log(p)) stages

where each contributes the cost of one latency,�, to the total cost of
the algorithm. We present the generalization of the MST algorithm
that is bounded by�(log2N+1(p)) onN -dimensional tori.

4.1.1 Original MST Algorithm

On an arbitrary number of nodes, the MST algorithm can be de-
scribed as follows. Viewing the nodes as a linear array, partition
this network into (roughly) two disjoint subnetworks. Sendthe data
from the root to some node, the destination, in the part of thenet-
work of which the root is not a member. Recursively continue in
the two separate subnetworks, with the original root and thedesti-
nation as roots for their respective subnetworks. This is illustrated
in Fig. 2 for broadcast. The cost of this algorithm isTMSTBast(p; n) = dlog2(p)e (�+ n�)

The MST algorithm operates as a directed graph forming a tree
with one incoming and one outgoing edge at each vertex. The
height of this tree isdlog2(p)e, hence the number of stages.

4.1.2 MST onN -Dimensional Meshes

The original MST algorithm assumed that the system of nodes
was a linear array. We can generalize the MST algorithm onN -
dimensional meshes. We assume that the topology is a mesh as
opposed to a torus for this algorithm since no messages need to
be sent around a ring of any particular dimensional axis. We also
assume that we can send or receiveN messages simultaneously as
long as each message is sent along different dimensional axes. In
the next section we further generalize this algorithm to send to the
two opposing nodes on each dimensional axis.

Our goal is to partitionp nodes intoN + 1 separate partitions
in order to form a tree with a height ofdlogN+1(p)e. One simple
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Figure 3. Left: Simple partitioning of a 4� 4 mesh into three
partitions where node 0 is the root sending to two other nodes.
Right: Partitioning the mesh using our generalized algorithm.

approach to partition the nodes is to dividep byN+1. Even though
this approach is relatively simple to implement, data messages
might not be sent simultaneously when using this algorithm.We
are given the constraint that sending simultaneously can occur only
by saturating the outgoing2N links from a node. We illustrate the
partitioning of sixteen nodes in a 4� 4 mesh in the left of Fig. 3.
With the first node as the root, given an automatic and usually
nondeterministic message routing in this disjointed partitioning,
sending simultaneously may not be facilitated. In our example both
data messages are routed through node 1, thereby leading to a
network conflict.

Another naive approach to partitioning is to recursively subdi-
vide the mesh in half along each dimension. This approach creates
an unbalancedN -ary tree with the maximum height ofdlog2(p)e
because it is bounded by the first subdivision of the mesh in half.
This approach does have the advantage of creating separate cubic
partitions that can facilitate sending simultaneously, yet the cost of
this algorithm is no better than the original MST algorithm.

To getN +1 partitions of roughly equal size, we simply divide
the mesh by partitioning off nodes from each dimension by a
decrementing counter starting fromN + 1. This partitioning is
illustrated in the right of Fig. 3. In our example, we are given a
two-dimensional mesh, so divide the first dimension by threeto
partition off one row from the mesh. In the remaining three rows,
we decrement our counter and divide the second dimension by two
to partition off two columns, which gives three partitions of sizes 3� 2, 3� 2, and 1� 4.D is an orderedN -tuple representing the number of nodes in
each dimension of the mesh, andDi represents the partition along
theith dimension where the root does not reside. So the partitioning
is described by

for (i = 1 : N)
for (j = 1 : N)

if (j > i)Dij = Dj
else if(j < i)Dij = Dj �Djj
elseDij = Dj=(N + 2� i)

whereQNi=1Di = p and0 < i � N;Di > 1 andjDj = N
This partitioning does not give the entire algorithm, but all indexing
of nodes is derived from each partitioning ofD. A full description
of the algorithm would nearly need the actual code because ofthe
many complicated cases arising from the integer arithmetic.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

j6� -?
Figure 4. Partitioning a 4� 4 torus into five partitions where node
5 is the root sending to four other nodes simultaneously.

The MST has a maximum and average height ofdlogN+1(p)e.
The number of nodes in each partition is not as even as simply
dividing byN +1, so the average height is a rough approximation,
but sending simultaneously is almost assured. Reducing to aone-
dimensional mesh, this algorithm is the original MST algorithm.

In order to send to any many nodes simultaneously, each parti-
tion needs to be as cubic as possible as opposed to elongated strips
that eventually get reduced to one dimension. We can simply parti-
tion the mesh by the order of the dimensions with the most nodes
first.

4.1.3 MST Sending Twice on Each Dimensional Axis

We now deal with sending messages in the two opposing directions
on each dimensional line. If dealing with a linear array onceagain,
the MST algorithm can be performed by dividing the nodes into
three partitions and then sending to the two opposing partitions.
This may require sending around the ring, so our algorithm now
makes use of the torus. The algorithm is adjusted by

for (i = 1 : 2N)
for (j = 1 : N)

if (j > (i� 1) mod N + 1)Dij = Dj
else if(j < (i� 1) mod N + 1)Dij = Dj �Djj �Dj+Nj
elseDij = Dj=(2N + 2� i)

whereDi+N represents the partition along theith dimension on the
opposing side of the root from theDi partition. The MST algorithm
completes indlog2N+1(p)e stages, which attains the lower bound
for latency. We illustrate this partitioning in Fig. 4.

If strictly dealing with a mesh, we can simply adjust the algo-
rithm by decrementing the counter from2N +1 within the assign-
ment whenj = (i � 1) mod N + 1 to start the subdivision by
however many dimensions have the root in a noncentral position.
Those dimensions where the root is not in a central position of the
dimensional line can simply be subdivided in half as opposedto
three separate partitions along that axis.

4.1.4 Summary

Given anyN -dimensional tori, we can perform the MST algorithm
in dlog2N+1(p)e stages instead of justdlog2(p)e, which is an
improvement oflog2(2N + 1). As with the original algorithm,
the generalized algorithm also does not incur network conflicts.
Reduce(-to-one) is implemented in much the same way in reverse
where the data is sent to the root.



Node 0 Node 1 Node 2 Node 3x0x1x2x3 Node 0 Node 1 Node 2 Node 3x0x1x2 !x3 !
Step 1

Node 0 Node 1 Node 2 Node 3 x0x1 x2x3 ! Node 0 Node 1 Node 2 Node 3x0 x1 x2 x3
Step 2

Figure 5. Minimum-spanning tree algorithm for scatter.

Node 0 Node 1 Node 2 Node 3x0 ! x1 ! x2 ! x3 ! Node 0 Node 1 Node 2 Node 3x0 x0 !x1 x1 !x2 x2 !x3 ! x3
Step 1 Step 2

Node 0 Node 1 Node 2 Node 3x0 x0 x0 !x1 x1 x1 !x2 ! x2 x2x3 x3 ! x3 Node 0 Node 1 Node 2 Node 3x0 x0 x0 x0x1 x1 x1 x1x2 x2 x2 x2x3 x3 x3 x3
Step 3

Figure 6. Bucket algorithm for allgather.

4.1.5 Generalized MST Scatter

A scatter can be implemented much like a broadcast using an MST
algorithm, except that at each step of the recursion only thedata
that ultimately must reside in the subnetwork, where the destination
is, needs to be sent from the root to the destination. The one-
dimensional MST scatter algorithm is illustrated in Fig. 5.Under
the assumption thatlog2N+1(p) is an integer and all subvectors are
of equal length, the cost of this approach is given byTMSTSatter(p; n;D) = log2N+1(p)Xk=1 ��+ (2N + 1)�kn�� =log2N+1(p)�+ p� 1p n�2N
which attains the lower bound for both latency and bandwidth.
Gather can also be implemented much like scatter in reverse.The
MST scatter and gather algorithms are used as both the long- and
short-vector algorithms since the MST algorithm are optimal for
both components of the cost of communication in these operations.

4.2 Bucket Algorithm

When implementing long-vector algorithms, the goal is to reduce
the� and terms of the cost. We show that a simple building-block
approach to the development of algorithms again yields algorithms
that are, in theory, near-optimal but for the� and  terms. The
algorithm we present is often referred to as bucket algorithm since
it collects data at each node like a bucket during each step ofan

operation. We generalize this algorithm whereN buckets collect
data simultaneously.

4.2.1 Original Bucket Algorithm

The bucket algorithm is used to implement either the allgather
or reduce-scatter. A simple approach to the implemention ofthe
allgather operation views the nodes as a ring. At each step, all nodes
send data to the node to their right. In this fashion, the subvectors
that start on the individual nodes are eventually distributed to all
nodes. The process is illustrated in Fig. 6. Notice that, if each node
starts with an equal subvector of data, the cost of this approach is
given byTBuketAllgather(p; n) = (p� 1)(�+ np �) =(p� 1)�+ p� 1p n�
4.2.2 Bucket onN -Dimensional Tori

We generalize the bucket algorithm toN dimensions by gathering
data on each of theN different dimensional lines simultaneously.
The difficulty lies when trying to gather data messages that do not
lie on any dimensional axis as the receiving node. If data on anode
was sent to itsN different neighbors at each step, then inherent
conflicts will occur with data arriving at a node from multiple
locations. We eliminate this problem by arbitrarily ordering where
the data is sent and received. We illustrate this inherent conflict in
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Figure 7. Sending data messagex0 through two stages of the
generalized bucket algorithm in a 4� 4 torus where a conflict
occurs when nodes 1 and 4 try to send the same data to node 5
at the second step.

Fig. 7. We resolved the conflict between nodes 1 and 4 by only
allowing node 4 to send the data to node 5 at the second step.

The generalization of bidirectional exchange algorithms is not
feasible with this model because of the constraint that in each step,
data is sent potentially toN other nodes and received fromN
nodes, thus saturating the2N links. The cost of our generalized
bucket algorithm now becomes(d�N)�+ Dj � 1Dj n�
where d =PNi=1Di and8i 6= j; Dj � Di
The bandwidth component is factored by

Dj�1Dj because data needs
to be sent only around the ring of the dimension with the most
number of nodes. The data needed to be sent along the bucket ofall
other dimensions is done so simultaneously. The latency isd�N
for our algorithm because that many steps are required for any data
message to traverse the entire torus.

The bandwidth component not only is at least twice the lower
bound, but p� 1p n� > Dj � 1Dj n� > p� 1p n�N
since at each step data cannot always be sent toN neighboring
nodes because of the conflict described above. Despite this con-
flict our algorithm is an improvement over the original bucket al-
gorithm.

4.2.3 Derived Long-Vector Broadcast

A long-vector broadcast algorithm can be derived by combining a
scatter with an allgather operation. The cost becomesTLongBast(p; n) = (dlog2(p)e+ p� 1)�+ 2p� 1p n�
when using the original one-dimensional algorithms.

By deriving the long-vector broadcast algorithm using theN -
dimensional algorithms of MST scatter and bucket allgather, the
cost now is(dlog2N+1(p)e+ d�N)�+�p� 12Np + Dj � 1Dj �n�
Clearly we have reduced both the latency and bandwidth cost of the
original derived long-vector broadcast.

4.2.4 Summary

The original bucket algorithm was designed specifically to avoid
network conflicts, and the generalized bucket algorithm canand
should be implemented to avoid any network conflicts. When im-
plementing reduce-scatter with the generalized bucket algorithm,
the lower bound,p�1p n, for the computation component is also
achieved.

Other collective operations can also be derived in similar fash-
ion to the broadcast. For example allreduce being implemented
with the new generalized MST reduce(-to-one) followed by MST
broadcast or by the generalized bucket reduce-scatter followed by
bucket allgather [19].

5. Performance
Here we describe the performance of an implementation of our
algorithms. The architecture on which the implementationswere
benchmarked is presented, followed by the results attainedfrom
that architecture.

All results are presented in logarithmic graphs. The lengthof
data ranges from 8 B to 4 MB, and time in seconds is the unit of
measure. The tests were conducted on 512 nodes within an 8� 8� 8 torus.

5.1 Testbed Architecture

The assumption that a node can send or receive from2N nodes
simultaneouslyis the main departure of this paper from previ-
ous work on collective communication. The IBM Blue Gene/L
(BG/L) [11] is a new supercomputer architecture that supports this
new functionality, but more discussion is needed to evaluate the
extent of that claim.

BG/L performs point-to-point communication using a3D torus
network. One BG/L rack comprises 1024 dual-processor compute
nodes divided into two midplanes. A job requested on BG/L is
given a physical3D partition that best fits the number of nodes
requested even if the number of nodes does not fill the entire
partition. A job can use the torus topology only if it is executed on a
midplane or rack. Otherwise smaller partitions are merely meshes.

BG/L also has two modes: coprocessor and virtual node mode.
We deal only with coprocessor mode in our experiments where both
processors on the node run a single thread. One processor handles
computation while the other processor handles cache coherency
and helps route data packets among other things.

We use MPI to implement the collective communication oper-
ations. The MPI implementation on BG/L [1] is an adaptation of
the MPICH2 library from Argonne National Laboratory [24, 26].
Multiple calls toMPI Isend facilitate sending simultaneously [23].
Packets are routed by using either a deterministic or an adaptive
routing algorithm on an individual basis. Since we cannot besure
of which routing algorithm is used for any particular packet, one
way we try to ensure that a node can send simultaneously to six
other nodes is to send only to nodes that lie along the same dimen-
sional axis as the sending node. Sending to two or more nodes that
are not along any axis may lead to network conflicts.

5.1.1 Sending Simultaneously

Attempting to send to multiple nodes simultaneously on BG/Ldoes
not take the same amount of time as just sending to one other node.
We represent the extra time to send simultaneously with� as a
factor of the overall time to send, so the cost to send simultaneously
is represented by (�+ n�)(1 + (l� 1)�)
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Figure 8. Left: Longest time for unidirectional sending or receivingon a mesh topology. Right: Longest time for bidirectional exchange on
a mesh topology.
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Figure 9. Left: Values of� for the longest time for unidirectional sending or receiving on a mesh topology. Right: Curve fitting based on the
experimental values of�, �, and� for unidirectional sending or receiving on a mesh topology.

wherel is the number of nodes to send, and0 � � � 1. If � = 0,
then sending to multiple nodes is free, but if� = 1, then there is no
benefit from performing simultaneous sends.

Values for�, �, and� can be found with simple benchmarking.
The longest, shortest, and average times for any node to sendor re-
ceive with one to six neighbors simultaneously were gathered. The
sends and receives are ordered in such a way that all nodes take
part in sending or receiving with a certain number of neighboring
nodes. We also time bidirection exchange, where each node sends
and receives, as opposed to one or the other, with a differentnum-
ber of neighbors simultaneously. We assume an underlying mesh
topology along with the torus in cases where the partition ofnodes
is smaller than a midplane. This condition is handled by constrain-
ing the nodes on the edges of the partition not to send around the
ring of a particular dimension.

The results for the longest time to perform a send or receive and
bidirectional exchange assuming a mesh topology are presented
in Fig. 8. Given all the data gathered from our benchmark, the
experimental values of� are determined on BG/L and are shown
in the left of Fig. 9 where the baseline for our comparisons isthe
time to perform unidirectional sends or receives with only one other

node. We performed curve fitting in the right of Fig. 9 for three sets
of data lengths: 8 to 512 B, 1 to 32 KB, and 64 KB to 4 MB. The
lines in the curve fitting graph represent the cost of communication
based on the experimental values of�, �, and� superimposed onto
data circles, representing the original data from the graphin the left
of Fig. 8, where we can clearly see a tight relationship.

For the first set of data lengths, 8 to 512 B,� = 0:9797 whereas� = 0:1792 for the third set of data lengths, 64 KB to 4 MB with
unidirectional sending and receiving on a mesh topology. The first
set corresponds to the use of the eager protocol by the send routine.
For greater data lengths, the rendezvous protocol is used. The time
to send to six neighbors simultaneously is less than six times the
time to send to one other node.

We note that bidirectional exchange performed with only one
other node is optimized to perform nearly as well as a unidirectional
send or receive when using the rendezvous protocol. The values of� and� are relatively close with bidirectional exchange and unidi-
rectional sends and receives, but the value of� is nearly double, so
bidirectional exchange does not scale for simultaneous exchanges.
Thus algorithms such as recursive-doubling and halving still pro-



Timings(ms) Data Lengths
Implementation 1 MB 2 MB 4 MBMPI-Bast 37 45 56my-bast-Buket-old 39 47 58my-bast-Buket-new 36 42 49MPI-Satter 4.6 8.8 17my-satter-MST-old 3.7 7.1 14my-satter-MST-new 3.2 5.6 10MPI-Allgather 250 280 340my-allgather-Buket-old 35 39 45my-allgather-Buket-new 33 36 39

Table 2. Timing results for long-vector implementations from 1 to
4 MB in milliseconds.

vide good performance despite not being able to be generalized to
send data simultaneously.

5.2 Results

In the graphs in Table 2 and Fig. 10 we report the following curves:� The lines labeledMPI are the default implementations of the
operations on the testbed architecture. These are used with
comparison to our implementations.� The lines labeledMST are for the implementations of the short-
vector algorithms.� The lines labeledBuket are for the implementations of the
long-vector algorithms.� The lines labeled withold are for our original implementations
of algorithms that assume a linear array topology. These arealso
used to compare with our new generalized algorithms.� The lines labeled withnew are for the implementations of the
new generalized algorithms on a three-dimensional torus.

In Table 3 we present the cost of the overhead in implementing
the new generalized and original algorithms. The overhead that
mainly consists of calculating indices is denoted by�, which is
a constant function of the number of dimensions. For instance
eight arrays of lengthN are used in our implementation of the
new generalized MST broadcast.�(3) represents the overhead of
the implementations of the new generalized algorithms whereas�(1) represents the implementations of the original algorithms.
These results are found by taking the average time to executethe
implementations without performing any communication across all
data lengths.

5.2.1 Broadcast

In the left of Fig. 10 we compare implementations of broadcast
for short lengths of data, 8 B to 16 KB. Since data messages are
not sent simultaneously on BG/L at data lengths less than 1 KB,
the new generalized MST algorithm of broadcast nearly emulates
the original MST algorithm, but the significant overhead required
to implement our new generalized algorithm,�(3), derogates its
performance compared to the much simpler implementation ofthe
original MST algorithm. Our new implementation gains a factor of
two performance around 2 KB which because of the decrease in the
number of stages from the original,dlog2(p)e MST algorithm.

In Table 2 we compare implementations of broadcast for long
lengths of data, 1 to 4 MB. Even though our new derived long-
vector broadcast does outperform our old long-vector and IBM
MPI’s implementations, performance gains are bounded by the
limitations of the allgather building block.

Timings (�s) Overhead
Implementation �(3) �(1) Ratiomy-bast-MST 30 0.52 58my-satter-MST 520 1.3 400my-allgather-Buket 2300 2.8 821

Table 3. Timing results in microseconds and ratios of the over-
head,�, required for the implementations of the new generalized
and original algorithms.

5.2.2 Scatter

In Table 2 we can clearly see that our new generalized MST scatter
performs quite well for long lengths of data. For short lengths of
data, our original and IBM’s implementations of scatter perform
quite favorably compared to our new generalized scatter because
of the overhead, which is a factor of four hundred differenceshown
in Table 3. Since we use MST scatter as a building block for the
long-vector broadcast, this is still a significant performance gain.

5.2.3 Allgather

In Table 2 our new generalized bucket allgather sees only a
marginal performance gain for long lengths of data from our origi-
nal bucket algorithm. This is due to the following factors:� Since the bucket algorithm was designed for long data lengths,

the� term dominates the cost. Our new generalized algorithm
decreases the bandwidth cost by only a small fraction from the
original bucket algorithm where both� terms asymptotically
approach the bound of�(n).� The significant overhead in the new generalized implementation
is over a factor of eight hundred from the original and simpler
implementations given in Table 3.� The bucket algorithm assumes the topology is a full torus, but
our tests were conducted on a midplane. A BG/L rack consists
of 1024 nodes within a 16� 8 � 8 torus, so messages in a
midplane can be sent around the ring physically in only two of
the three possible dimensions. Since our algorithm assumesa
full torus, network conflicts will occur because messages are
sent around the ring of each dimension at every step.� Our cost analysis assumes that sending simultaneously up to2N other nodes costs the same as sending to only one other
node, but we can clearly see that� � 0 from our benchmark
results.

We show the factor of eight performance gain between our imple-
mentation of the bucket allgather and IBM’s default implementa-
tion of allgather in the right of Fig. 10. This clearly shows aglitch
in IBM’s default implementation of allgather.

5.2.4 Summary

We can obtain performance gains with our new generalized algo-
rithms, but significant factors limit that gain. Even thoughoptimiza-
tions can be made to our new implementations, we have shown that
a performance gain ofN , three on BG/L, is not attainable because
of inherent limits in the capabilities of the architecture and the al-
gorithms themselves.

6. Conclusions
Our generalized algorithms make use of the physical underlyingN -dimensional torus. We are able to achieve the lower bound
for latency using the MST algorithm. Our MST scatter is also
able to achieve the lower bound for bandwidth, but our bucket
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Figure 10. Left: Comparing short-vector implementations of broadcast. Right: Comparing our bucket allgather to IBM’s default implemen-
tation of allgather.

algorithm, and any possible algorithm, cannot achieve the lower
bound bandwidth for allgather because of the constraints ofour
model of parallel computation. Despite the lower expected costs
of these algorithms, the implementations of these algorithms are
limited by the physical mechanisms of the system and by the
significant overhead needed.

More advanced techniques such as imposing higher-dimensional
virtual topologies in order to develop hybrid multidimensional al-
gorithms can be used on top of these simultaneously sending al-
gorithms for lower performance costs [8]. When the mechanism
of sending simultaneously becomes decoupled from the physical
topology, simplier techniques such as the division ofp nodes byN + 1 for the MST algorithm can be used without penalty.

As part of the current project, we intend to investigate collective
communication on systems with SMP nodes that share more than
one processor. The virtual node mode on the IBM Blue Gene/L fa-
cilitates the use of both processors in a node. We are also notcon-
vinced that our generalized bucket algorithm is the most efficient
algorithm, so further study is required to develop an algorithm that
strives to obtain the lower bound for bandwidth in our long-vector
algorithms.
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