Efficient Implementation of MPI-2 Passive
One-Sided Communication on InfiniBand
Clusters*

Weihang Jiang!, Jiuxing Liu!, Hyun-Wook Jin!, Dhabaleswar K. Panda®,
Darius Buntinas?, Rajeev Thakur?, and William Gropp?

! Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210
{jiangw, liuj, jinhy, panda}@cse.ohio-state.edu
2 Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439
{buntinas,thakur,gropp}@mcs.anl.gov

Abstract. In this paper we compare various design alternatives for syn-
chronization in MPI-2 passive one-sided communication on InfiniBand
clusters. We discuss several requirements for synchronization in passive
one-sided communication. Based on these requirements, we present four
design alternatives, which can be classified into two categories: thread-
based and atomic operation-based. In thread-based designs, synchroniza-
tion is achieved with the help of extra threads. In atomic operation-
based designs, we exploit InfiniBand atomic operations such as Compare-
and-Swap and Fetch-and-Add. Our performance evaluation results show
that the atomic operation-based design can require less synchronization
overhead, achieve better concurrency, and consume fewer computing re-
sources compared with the thread based design.

1 Introduction

MPI has been the de facto standard in high-performance computing for writ-
ing parallel applications. As an extension to MPI, MPI-2 [11] introduces sev-
eral new features. One important new feature is one-sided communication. In
the traditional two-sided communication, both parties must perform matching
communication operations (e.g., a send and a receive). In one-sided operation, a
matching operation is not required from the remote party. All parameters for the
operation, such as source and destination buffers, are provided by the initiator
of the operation. One-sided operations can support more flexible communication
patterns and improve performance in certain applications.

In MPI-2 one-sided communication, the process that initiates the operation
is called the origin process, and the process being accessed is called the target
process. The memory area in the target process that can be accessed is called the

* This research is supported by Department of Energy’s grant #DE-FC02-01ER 25506,
National Science Foundation’s grants #CNS-0204429 and #CCR-0311542, and Post-
doctoral Fellowship Program of Korea Science & Engineering Foundation(KOSEF).
This work is also supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

window. MPI-2 requires explicit synchronization to guarantee the completion of
data communication operations on windows. MPI-2 supports two synchroniza-
tion modes: active and passive. In active mode, the target is actively involved in
synchronization, whereas in passive mode, the target is not explicitly involved
in synchronization.

We have previously implemented MPI-2 active mode one-sided communica-
tion in [7] using RDMA-based communication over InfiniBand. In this paper
we extend this implementation to allow passive one-sided communication. The
main challenge in extending active mode to passive mode is designing an efficient
synchronization mechanism that allows one-sided operations to be performed at
the target node independently of what the target process is doing.

Several design challenges are involved in implementing efficient MPI-2 passive
one-sided communications. First, the implementation must be able to make inde-
pendent progress in passive one-sided communications. Next, concurrent commu-
nications must be handled efficiently. Another issue is efficient implementation of
shared and exclusive locks. A related issue is how to implement MPI_Win lock()
in a nonblocking fashion. Further, since modern network interfaces, such as In-
finiBand, offer RDMA-based operations, these operations should be used in the
most efficient manner.

In this paper we take on these challenges. We implement and evaluate four
design alternatives for passive-mode synchronization: dedicated thread, event-
driven thread, Test-and-Set, and MCS based designs.

All these designs have been incorporated in our MPI-2 implementation over
InfiniBand, MVAPICH2 [14] [9], which is based on MPICH2 developed by Ar-
gonne National Laboratory [1].

The paper is organized as follows. In Section 2, we briefly describe Infini-
Band. In Sections 3—-5, we present design issues. In Section 6, we evaluate the
performance of our various designs. In Section 7, we discuss related work. In
Section 8, we draw conclusions and discuss future work.

2 InfiniBand and Atomic Operations

The InfiniBand Architecture is an industry standard for high-performance in-
terconnects between processing nodes and I/O nodes [5]. Host channel adapters
(HCASs) connect nodes to the InfiniBand fabric. InfiniBand provides both chan-
nel and memory semantics. In channel semantics, send and receive are used for
communication. In memory semantics, InfiniBand supports remote direct mem-
ory access (RDMA) operations.

Another emerging feature of InfiniBand is remote atomic operation. This al-
lows us to efficiently implement the synchronization algorithms designed for a
shared-memory environment to a distributed private-memory environment. In-
finiBand supports two 64-bit atomic operations: Compare-and-Swap and Fetch-
and-Add. The Compare-and-Swap operation reads a 64-bit content from the
memory of a remote process, compares the content with the compare_value pa-
rameter of this atomic operation, and puts the value of the swap_value parameter
into the remote memory if the two compared values are the same. The Fetch-
and-Add operation reads data from the remote memory, performs an addition
operation between the data and the add_value parameter of this atomic opera-
tion, and updates the result to the remote memory. Both the Compare-and-Swap

and Fetch-and-Add operations bring back the old value of the variable in the
remote memory. As the name “atomic operation” suggests, Compare-and-Swap
and Fetch-and-Add operations are handled atomically, and more important, they
are processed by the processor on the HCAs, without CPU involvement at the
remote side.

3 Design Issues in Passive One-Sided Communication

In this section we discuss challenges in implementing efficient MPI-2 passive
one-sided communication.

Synchronization Performance: When the contention for synchronization
functions is low, low synchronization overhead is important. When the contention
is high, low synchronization delay is desirable. In both cases, the number of
messages exchanged for synchronization functions should be small. Indepen-
dent Progress: In MPI-2 passive one-sided communication, the target process
does not make any MPI calls to cooperate with the origin process for com-
munication or synchronization. Therefore, the implementation cannot rely on
the progress engine being called by MPI functions, the strategy commonly used
for two-sided communication. Concurrent Communication: In MPI-2, one-
sided communication and two-sided communication may happen concurrently.
One-sided communication from different origin processes to disjoint windows at
a target process may also happen concurrently. Hence we need to handle this sit-
uation in our design. Nonblocking MPI_Win lock(): When MPI_Win lock()
is called, if the lock at the target process is held by other processes, the lock
cannot be acquired until the lock is released. The nonblocking MPI_Win lock()
allows the current process to continue without waiting for the lock. However,
the lock must be acquired before the first communication operation takes ef-
fect. Shared Locks and Exclusive Locks: In MPI-2, both shared locks and
exclusive locks are supported. RDMA for Data Transfer: Modern network
interfaces, such as InfiniBand, offer RDMA-based operations, which can be used
for high-performance data transfer in one-sided communication [7]. Therefore,
synchronization mechanisms must work correctly with RDMA-based communi-
cation.

In following sections, we address these challenges and describe thread-based
and atomic operation-based designs for MPI-2 passive mode synchronization.

4 Thread-Based Designs

Thread-based design is widely used in MPI implementations to support one-
sided communication. In our MPI-2 implementation over InfiniBand, we use
RDMA operations to transfer data, while we still use a thread running at the
target process to handle special cases such as noncontiguous data transfer and
the accumulate function. Therefore, we are interested in whether we can use this
thread to handle passive synchronization efficiently.

4.1 Dedicated Thread-Based Design

In a dedicated thread-based design, an assisting thread runs at the target side
in a dedicated manner and handles all passive synchronization requests from
the origin processes. In order to achieve low latency, the thread is always active
and uses polling to process communication. The characteristics of the thread
guarantee the independent progress of the synchronization process. Before using

RDMA operations to transfer data, we need to acquire the lock. This is done
by sending a control message and getting an acknowledgment back. In order to
implement MPI_Win_lock() in a nonblocking manner, after sending the lock re-
quest, the origin process continues its work, buffering any one sided operations
until the lock is acquired. Since in a thread-based design, the target process
knows whether the request message is for a shared lock or an exclusive lock, the
target process can coordinate between shared-lock requests and exclusive-lock re-
quests to support both of them. In this implementation, passive synchronization
messages and two-sided messages are handled by different threads. Eventually
the MPICH2 internal progress engine will be thread safe, until then, we need
to provide our own mutual exclusion mechanisms to serialize access by the two
threads.

4.2 Event Driven Based Design

A problem in the dedicated thread-based design is that since the dedicated
thread keeps running at a target process, CPU cycles are consumed by the
thread even if there is no passive one-sided communication. In this section, we
introduce an event-driven based design to solve this problem.

InfiniBand provides both channel and memory semantics. By using channel
semantics, one process can generate a signal at a remote process. Also, InfiniBand
HCA supports event handlers, which can be driven by such a signal.

Combining these features, we propose an event driven-based design to reduce
the CPU utilization. Initially, a predefined event handler that can resume a
blocked thread is registered to an HCA. When the assisting thread is created,
the process posts a receive operation and blocks the thread. If a process wants
to communicate with a remote process, it first posts a send operation matching
with the prepost receive operation at the remote party, to generate a signal. Then
the event wakes up the thread. The remaining steps are similar to the dedicated
thread-based design. Finally, before the thread is blocked again, another receive
operation is posted.

5 Atomic Operation-Based Design

In Section 2, we described hardware-level remote atomic operations in Infini-
Band. These give us the opportunity to exploit some well-known algorithms
proposed for shared-memory synchronization. In this section, we present two
designs based on the Test-and-Set and MCS lock algorithms.

5.1 Test-and-Set-Based Design

In the Test-and-Set algorithm, a flag is used to indicate whether the lock is
held. To acquire a lock, a processor tries to change the flag from false to true by
executing a Test-and-Set instruction. The processor releases the lock by changing
the flag back to true. To implement MPI-2 synchronization functions using the
Test-and-Set lock algorithm, we can use the atomic operation Compare-and-
Swap.

Since the atomic operations are handled by HCA and the MPI library at
the target process is not involved, the progress of passive synchronization is
independent of the progress of the target process. Once the Compare-and-Swap
for acquiring a lock succeeds, the process can start using RDMA to transfer data.

To implement nonblocking MPI_Win_lock, a process issues the first Compare-
and-Swap operation in MPI_Win lock(), without waiting for it to complete. The
waiting is delayed until the first communication operation.

We can easily extend the Test-and-Set algorithm to support both shared
lock and exclusive lock, by checking the value returned by Compare-and-Swap
operation. Details can be found in [6].

One drawback of the Test-and-Set-based design is the high network traffic
caused by repeated issue of Compare-and-Swap operations. Using an exponential
back-off mechanism can alleviate this problem.

5.2 MCS-Based Design

The MCS algorithm is proposed as a scalable synchronization algorithm for
shared-memory multiprocessors [10]. The main idea of MCS is to maintain a
distributed queue for processes competing for the lock. Scalability is achieved by
avoiding spinning on remote memory, and by decreasing the lock synchronization
delay.

For each window, each origin process maintains three data structures —
flag, previous, and next — and each target process maintains one data structure,
called lock. When origin process A requests a lock on the target process, it swaps
its process id with the value of lock. Then origin process B requests the same
lock by swapping. Based on the value swapped back, origin process B knows
that origin process A is queued before it. Thus, it updates the value of next in
origin process A. When origin process A releases the lock, based on the value of
next, origin process A updates the value of flag in the origin process B. Finally,
when the origin process B releases the lock, it resets lock to NULL at the target
process. The atomic Swap operation is used to update the lock value atomically,
and RDMA Write is used to update the next and flag values.

6 Performance Evaluation

The performance of MPI-2 passive synchronization functions can be evaluated
with respect to the following metrics: (1) synchronization overhead: time spent
on synchronization functions, (2) synchronization delay: time required after one
origin process releases a lock on a remote window and another origin process
acquires the same lock, (3) concurrency: the capability to handle multiple con-
current passive synchronization functions, (4) message complexity: the number
of messages exchanged for synchronization functions, and (5) CPU utilization:
the CPU cycles involved in the synchronization process.

Our experimental testbed consists of a cluster of eight SuperMicro SUPER
X5DL8-GG nodes, each with dual Intel Xeon 3.0 GHz processors, PCI-X 64-
bit 133 MHz bus, and connected to Mellanox InfiniHost MT23108 DualPort 4x
HCAs. Detailed configuration can be found in [6].

6.1 Synchronization Overhead

We begin with a simple approach to measure synchronization overhead. In this
test, one process calls only MPI-2 passive synchronization functions (MPI_Win_
lock and MPI_Win_unlock) on a window at the other process for multiple it-
erations. We then report the time taken for each iteration. Figure 1 shows the
synchronization overhead for all four designs. We also report separately the time
spent acquiring the lock and the time spent releasing the lock. We can see that

40

B Unlock
351

O Lock
30

20

)
S

%

>

5 R

Time(us)

%

Synchronization Delay(us)
S

10

& o

Dedicated Thread Event Driven ATOM-Test&Set ATOM-MCS Dedicated Thread Event Driven ATOM-Test&Set ~ ATOM-MCS

Fig. 1. Synchronization Overhead Fig. 2. Synchronization Delay

6 X e ATOM-MCS
1) . 50
504 —%—ATOM-MCS /
E J — g 40 4+
2404 X/M/ £
S 3 S50
o
10 E 8 10 c, = = =
0 + + + + + +
0 + + + +
1 2 3 4 5 6 7 0 | 5 3 4
Number of Processes Number of Computing Threads
Fig. 3. Concurrency Fig. 4. Computing Thread

the Test-and-Set-based design shows the best performance, approximately 12.83
us. Releasing a lock is faster for this design because processes do not need to
wait for the completion of unlock. We also see that using a dedicated thread
can achieve better performance than using atomic operations with MCS. The
event-driven approach shows the worst performance.

6.2 Synchronization Delay

Synchronization delay is the delay between one origin process releasing a lock
on a remote window and another origin process acquiring the same lock. It
is an important performance metric for a lock algorithm, especially when the
competition between different origin processes for a given lock is heavy. The test
for measuring synchronization delay consists of multiple iterations, using two
origin processes and one target process. In the even-numbered iterations, origin
process 1 requests a lock earlier than origin process 2, and in the odd-numbered
iterations, origin process 2 requests a lock earlier than origin process 1. After
acquiring the lock, each process holds the lock for time E and then releases the
lock. The value of E we used is always longer than the synchronization overhead
of all designs. As we can see in Figure 2, the designs based on atomic operations
outperform the thread-based designs. The MCS-based design shows the best
synchronization delay because locks can be transferred to the next process by
using a single message. In all other designs, at least a roundtrip time is required.

6.3 Concurrency

For some MPI-2 applications, the target process may have a large volume of data
to be accessed by multiple origin processes. One way to improve the application
performance is to use multiple windows and let different origin processes con-
currently access the data in different windows. To evaluate how different designs
handle concurrent accesses, we used a test with multiple origin processes and
one target process. In the target process, multiple windows are created, and the

number of windows is equal to the number of origin processes. In each itera-
tion, each origin process calls only MPI_Win_lock and MPI_Win_unlock on the
corresponding target window. We then report the average time spent on each
iteration. Figure 3 shows that for Test-and-Set-based design and MCS-based
design, the time spent on synchronization functions does not change. This re-
sult indicates that they can handle concurrent accesses efficiently. However, for
thread-based designs, the time increases when the number of origin processes
increases.

Further, we can see that even using multiple threads, we cannot achieve better
concurrency. The reason is that as long as all the threads are sharing the same
progress engine, the time spent on the progress engine cannot be overlapped,
because of the mutexes controlling access to the progress engine.

6.4 CPU Utilization

In an MPI-2 application, each process may have multiple computing threads
running. We evaluated the performance of synchronization functions under this
scenario. Our test uses two processes: one target process and one origin process.
The target process spawns several computing threads, and the origin process
calls synchronization functions MPI_Win_lock and MPI_Win_lock on a window
at the target process for multiple iterations. We then measured the time for
each iteration. Figure 4 shows that for both atomic-based designs, the time
remains almost unchanged, while for the dedicated thread-based design, the
time increases with an increase in the number of computing threads. For the
event-driven based design, since the assisting thread is awakened by a signal,
the time almost remains constant, too.

6.5 Discussion

From the performance results we can see that, in general, atomic operation-
based designs outperform thread-based designs. By taking advantage of atomic
operations in InfiniBand, we can achieve better synchronization overhead and
synchronization delay. Atomic operation-based designs can also achieve better
concurrency and independent communication progress. One possible drawback
of the atomic operation-based design is that the number of messages to acquire
a lock increases when there is high contention for the lock. For the Test-and-Set-
based design, this problem can be solved by using exponential backoff. Detailed
evaluation of the message complexity of the proposed schemes together with the
exponential backoff is included in [6]. For the MCS-based design, the problem
stems from the lack of an atomic Swap operation in the current InfiniBand
implementation.

7 Related Work

Most implementations of MPI-2 passive one-sided communication are imple-
mented based on the thread-based design [3], [12], [13], [17], [15], [2]. Work in
[16], [4] describe nonthreaded implementations of MPI-2 passive one-sided com-
munication, where the progress engine takes charge of performing synchroniza-
tion. This design does not satisfy the requirements we have defined in Section 3.
The latest version of LAM-MPI [8] supports a part of MPI-2 functions that do
not include the passive one-sided communication.

8 Conclusions and Future Work

In this paper, we analyzed issues and concerns related to designing a high-
performance MPI-2 passive synchronization mechanisms on InfiniBand clusters.
We proposed, implemented, and evaluated two thread-based designs (i.e., ded-
icated thread and event-driven blocking thread-based designs) and two atomic
operation-based designs (i.e., Test-and-Set and MCS-based design). We demon-
strated that by taking advantage of InfiniBand atomic operations, we can achieve
efficient synchronization and deliver good performance.

In the future, we plan to use real applications to study the impact of syn-
chronization in MPI-2 passive communication. We also plan to investigate how
to handle datatype efficiently in MPI-2 one-sided communication.

References

1. Argonne National Laboratory. MPICH2. http://www.mcs.anl.gov/mpi/mpich2/.

2. N. Asai, T. Kentemich, and P. Lagier. MPI-2 Implementation on Fujitsu Generic
Message Passing Kernel. In SC, 1999.

3. S. Booth and F. E. Mourao. Single Sided MPI Implementations for SUN MPI. In
SC, 2000.

4. M. Golebiewski and J. L. Traff. MPI-2 One-Sided Communications on a Giganet
SMP Cluster. In EuroPVM/MPI, 2001.

5. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0,
October 24 2000.

6. W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, D. Buntinas, R. Thakur, and W. Gropp.
Efficient Implementation of MPI-2 Passive One-Sided Communication over Infini-
Band Clusters. Technical Report OSU-CISRC-5/04-TR34, May 2004.

7. W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and R. Thakur. High

Performance MPI-2 One-Sided Communication over InfiniBand. In IEEE/ACM

CCGrid, 2004.

LAM Team, Indiana University. LAM 7.0.4.

9. J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and
B. Toonen. Design and Implementation of MPICH2 over InfiniBand with RDMA
Support. In IPDPS, April 2004.

10. J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. In ACM Trans. on Computer System, 1991.

11. Message Passing Interface Forum. MPI-2: A Message Passing Interface Standard.
High Performance Computing Applications, 12(1-2):1-299, 1998.

12. E. Mourao and S. Booth. Single Sided Communications in Multi-Protocol MPI.
In EuroPVM/MPI, 2000.

13. F. E. Mourao and J. G. Silva. Implementing MPI’s One-Sided Communications
for WMPL. In EuroPVM/MPI, September 1999.

14. Network-Based Computing Laboratory. MVAPICH2: MPI-2 for InfiniBand on
VAPI Layer. http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html, Jan-
uary 2003.

15. M. Schulz. Efficient Coherency and Synchronization Management in SCI based
DSM systems. In SCI-Europe, Conference Stream of Euro-Par, 2000.

16. J. Traff, H. Ritzdorf, and R. Hempel. The Implementation of MPI-2 One-Sided
Communication for the NEC SX. In SC, 2000.

17. J. Worringen, A. Gaer, and F. Reker. Exploiting Transparent Remote Memory
Access for Non-Contiguous and One-Sided-Communication. In CAC, April 2002.

®

