
MPI-IO/L: Efficient Remote I/O for MPI-IO via Logistical Networking

Jonghyun Lee∗, Robert Ross∗, Scott Atchley†, Micah Beck‡, Rajeev Thakur∗

∗Argonne National Laboratory †Myricom, Inc. ‡University of Tennessee

Math. and Comp. Sci. Div. Oak Ridge, TN 37830 USA Dept. of Comp. Sci.

Argonne, IL 60439 USA Knoxville, TN 37996 USA

{jlee, rross, thakur}@mcs.anl.gov atchley@myri.com mbeck@cs.utk.edu

Abstract

Scientific applications often need to access remotely
located files, but many remote I/O systems lack standard
APIs that allow efficient and direct access from applica-
tion codes. This work presents MPI-IO/L, a remote I/O
facility for MPI-IO using Logistical Networking. This
combination not only provides high-performance and di-
rect remote I/O using the standard parallel I/O interface
but also offers convenient management and sharing of re-
mote files. We show the performance trade-offs with var-
ious remote I/O approaches implemented in the system,
which can help scientists identify preferable I/O options
for their own applications. We also discuss how Logis-
tical Networking could be improved to work better with
parallel I/O systems such as ROMIO.

1 Introduction

As networking technologies improve, scientists are
running an increasing number of applications in dis-
tributed environments, with the frequent need to store
and retrieve data at remote locations [8]. Tradition-
ally, scientists have performed remote I/O by temporar-
ily copying, or staging, remote files in their entirety to
local disks. Although staging seeks to boost the I/O
performance by colocating data with the application, it
imposes several problems. For example, it does not allow
applications to directly access remote files, requiring ex-
tra disk I/O. It can also cause consistency problems and
excessive data transfer for partial file access. Moreover,
staging is often done manually and is thus not conve-
nient.

A better remote I/O system should address the fol-
lowing I/O needs typically required by many scientists.
Functionality. Direct access to any portion of remote
files through a convenient interface should be possible.

This work was supported in part by the U.S. Dept. of Energy
under Contract W-31-109-ENG-38. An extended version of this
manuscript is available as ANL/MCS-TM-290.

Since many scientific codes are parallel, supporting par-
allel I/O is highly beneficial.

Performance. Remote I/O is often slow because of low
wide-area network bandwidth and the amount of data to
be accessed. Thus, it is important to reduce apparent
remote I/O cost [2, 10, 13].

Management. Scientific data files can be replicated
or striped across multiple storages for fault tolerance or
faster access. Efficient management of the information
about each replica or stripe (e.g., its physical location
and mapping to the logical file) is helpful, especially with
a number of logical and physical files.

Sharing. Scientific data is often shared among a group
of people. Distributing information about files and ac-
cessing the files using such information should be easy.

This work addresses the above issues by coupling a
parallel I/O library with remote I/O functionality. We
chose the ROMIO [15] implementation of MPI-IO [12] for
the testbed I/O library and Logistical Networking [5] for
the remote I/O and file management component. MPI-
IO is the de facto parallel I/O interface standard, used
both directly by applications and by high-level libraries
[1, 11]. Supporting remote I/O via MPI-IO enables many
applications to perform remote I/O transparently with-
out code changes. Logistical Networking provides pow-
erful remote I/O mechanisms, including efficient trans-
fer by concurrent data streams and intelligent download
schemes [13]. It also flexibly describes the relationship
between a logical file and its associated physical files with
a portable XML file, thereby easing the sharing.

The contributions of this work are as follows. First,
we identify the design issues for a Logistical Networking-
based remote I/O facility for a parallel I/O system and
provide an implementation with ROMIO, called MPI-
IO/L. Second, we optimize basic I/O operations for MPI-
IO/L and discuss the trade-offs of the proposed ap-
proaches, helping users select the preferable remote I/O
options for their applications. Third, we identify ways
to make Logistical Networking work better with parallel
I/O systems such as ROMIO.

Application

MPI−IO

ADIO

PVFS LNUFS ...

Local Storage Remote Storage

Applications

Middleware

LoRS

(Logistical Runtime System)

IBP

(Internet Backplane Protocol)

Access Layer

Physical Layer

L−BoneexNode

(b)(a)

Figure 1. (a) ROMIO’s layered architecture; (b)
Network Storage Stack.

1.1 MPI-IO and ROMIO

MPI-IO provides the standard interface for paral-
lel I/O from multiple processes to a common file on a
shared file system. Each process can access the file ei-
ther independently or cooperatively with other processes
(collective I/O1). MPI-IO defines consistency semantics,
which state what happens when multiple processes con-
currently access the same file. The default semantics in
MPI-IO guarantee that the changes written by a pro-
cess will be immediately visible to that process, but not
to the other processes until explicit synchronization is
performed. When multiple writes are performed on the
same region, the result is undefined. This approach is
more relaxed and more suitable for parallel I/O than
is the strict sequential consistency required by POSIX
I/O, and it provides opportunities to optimize the per-
formance within the MPI-IO implementation.2

ROMIO is a high-performance and portable imple-
mentation of MPI-IO. For high performance, ROMIO
optimizes noncontiguous I/O operations through data
sieving and collective I/O through two-phase I/O [15].
ROMIO achieves portability through an internal I/O
layer called Abstract Device I/O (ADIO) [15]. ADIO
defines a set of basic I/O interfaces that are used to im-
plement more complex, higher-level I/O interfaces such
as MPI-IO. For each supported file system, ADIO re-
quires a separate implementation (“module”) of its I/O
interfaces. Figure 1(a) depicts this architecture.

1.2 Logistical Networking

Logistical Networking provides scalable and sharable
storage resources and services for distributed applica-
tions. The center of this technology is the Network Stor-
age Stack (Figure 1(b)), which was modeled after the In-
ternet Protocol stack. The bottom layers (physical and
access) consist of storage media such as disk and memory

1Collective I/O optimizes parallel I/O operations by using the
global knowledge of data distributions in memory and file [15].

2To force the sequential consistency within MPI-IO, a special
“atomic” mode can be used, or writes can be temporally separated
from each other by surrounding each with sync operations.

A B C D
300

200

100

0

0 1

1

2

3

0 1 2 3

0

3

3

2

0

1

IBP
Depots

Network

exNodes

Figure 2. Sample exNodes.

and storage services such as the disk driver. The mid-
dle layers are the core of Logistical Networking; each is
described below. The top layers include the middleware
layer, which provides services using underlying compo-
nents such as this work, and the application layer.
IBP (Internet Backplane Protocol). IBP allows
anyone to share the storage space on her machine over
the network. Unlike FTP servers, these IBP depots do
not maintain user accounts, file system hierarchies, and
the like. A client can request an allocation (a specific
amount of space) for a specific amount of time from any
depots and can access and share the allocation until it
expires. Each depot is preset with the total amount of
storage space that it is willing to share and the maximum
time allowed for any single allocation.

IBP implements only six storage operations. Among
them, the operation allocate() either grants or denies
client requests based on the depot’s space availability
and the duration policy. For a granted request, the de-
pot sends three capabilities (keys) to the client, needed
for write, read, and manage (change the allocation prop-
erties such as size) access to the allocation. A client can
share an allocation with others by giving them a subset of
capabilities (e.g., read only) associated with it to control
their access to the allocation. The operations store()

and load() write to and read from an allocation, respec-
tively. While read can begin from any offset within the
allocation, writes are currently append only.
L-Bone (Logistical Backbone). L-Bone is an LDAP-
based server that catalogs and polls the available pub-
lic depots periodically to determine available storage.
Clients can send a request to an L-bone server for a list
of depots that meet specific storage criteria.
ExNode. When a logical file is striped or replicated
across depots, multiple allocations and capabilities are
associated with the file. The exNode is a data structure
that aggregates allocations and provides a mapping from
the logical view of a file to the actual allocations, anal-
ogous to Unix inodes. Unlike the inode, however, the
exNode allows for varying size allocations, data replica-
tion, and arbitrary metadata for both the global exNode
and individual mappings. The exNode can be serialized
to XML for sharing between processes or clients.

Figure 2 shows the exNodes for four logical files. The
numbers shown in each exNode indicate which depot
stores an allocation for a certain portion of each file.
Here, A is stored in an allocation on depot 0, while B
is replicated on depots 0 and 1. C is striped over three

<exnode:mapping>

<exnode:metadata name="alloc_length" type="integer">100</exnode:metadata>

<exnode:metadata name="alloc_offset" type="integer">0</exnode:metadata>

<exnode:metadata name="exnode_offset" type="integer">100</exnode:metadata>

<exnode:metadata name="logical_length" type="integer">100</exnode:metadata>

<exnode:read>ibp://depot2:[port]/[key string]/READ</exnode:read>

<exnode:write>ibp://depot2:[port]/[key string]/WRITE</exnode:write>

<exnode:manage>ibp://depot2:[port]/[key string]/MANAGE</exnode:manage>

</exnode:mapping>

Figure 3. A serialized mapping in XML.

depots, and D is both replicated and striped. Figure 3
shows the serialized exNode in XML for a mapping to an
allocation of C stored in depot 2.
LoRS (Logistical Runtime System). LoRS provides
command line tools and APIs that automate the finding
of depots via the L-Bone, creating and using allocations
and capabilities, and creating exNodes. The remote I/O
facility described here was built by using the LoRS APIs.

2 Design

As mentioned, MPI-IO/L was implemented by
adding a Logistical Networking-specific ADIO module to
ROMIO. MPI-IO/L maintains the file metadata (e.g.,
the mapping between logical and physical file contents),
contained in the exNode, locally where the application
runs, while the file data can be stored remotely. The
MPI-IO consistency semantics state that each file data
and metadata update need not be immediately visible
to other processes unless explicit synchronization meth-
ods are used. Accordingly, in MPI-IO/L each process
keeps a separate exNode in its memory and only locally
updates it for each write. At the user’s request (by call-
ing sync or close), the exNodes are synchronized among
processes, and thus the changes made by other processes
become visible. This coarse-grained synchronization can
effectively reduce the amount of communication.

Based on this file access model, we designed and imple-
mented the functions for the ADIO module as follows.3

Open and Close. LN Open and LN Close collectively
open and close a remote file from multiple processes.
When opening a file, the name of its XML exNode file
is passed to LN Open along with other attributes such as
file access mode. MPI-IO/L assumes that the exNode
file will be accessed from a local file system and has only
the rank 0 (root) process read and write the file.

When called, LN Open creates two data structures in
each process’s memory. First, it creates an exNode that
contains allocation- and mapping-related information for
the remote file. If the given XML file exists, the root first
reads it and broadcasts its content to the other processes.
Then, each process deserializes the XML file content into
an empty exNode. If the file does not exist, each process
creates only an empty exNode.

Next, LN Open creates a depotpool on each process.
This is a list of depots that will be used for data stor-
age and retrieval. If a file is opened for read-only, the

3The implementation is partly based on libxio version 0.2, which
provides standard Unix I/O interfaces using Logistical Networking.

depotpool is created by extracting from the XML file all
the depots that provided allocations for previous writes.
If the file is opened for write-only, an L-Bone server is
contacted to find depots that satisfy the user’s storage
requirements.These requirements are passed to LN Open

as hints by using an MPI Info object. The user can also
provide a list of known depots that she wants to use.
LoRS provides separate APIs for depotpool creation for
read-only and write-only cases.

When a file is opened for both read and write, both
depot extraction and search should be performed. How-
ever, LoRS currently does not provide a single API for
both operations. Moreover, it does not allow the two
APIs used for read-only and write-only cases to be com-
bined. MPI-IO/L deals with this problem by manually
extracting depots from the XML file and adding them to
the L-Bone search results. This is not a desired solution,
however, because LoRS maintains only one depotpool,
and thus the depots extracted for future reads are in-
cluded in the same depotpool that contains the ones se-
lected for writes. Hence, the read depots might be used
for future write operations, and if they fail to meet the
user’s storage requirements, an error will occur.

Other hints can be passed at file open. They include
the hostname and port number of a preferred L-Bone
server, the size of the unit at data transfer (called block),
the number of replicas to create at each write, the num-
ber of threads to be used for concurrent transfers, the size
of the memory buffer for buffered I/O (described later),
and options for MPI-IO/L specific optimizations. After
creating the two data structures on each process, LN Open

initializes internal variables according to the passed hint
values, allocates buffer memory if buffered I/O is en-
abled, and then returns.

LN Close calls LN Sync to synchronize exNodes from
all the processes and serialize the synchronized exNode to
the XML file, frees internal data structures, and returns.
LN Sync is described in detail later.

Contiguous I/O. MPI-IO/L provides two modes of
contiguous I/O. Direct I/O issues remote I/O requests
immediately. Buffered I/O temporarily buffers the write
data using preallocated memory. The buffer holds one
contiguous region of the file, whose coverage can change
dynamically. If the write data cannot be buffered in the
current buffer in its entirety or will not form a contigu-
ous extent when combined with previously buffered data,
then the buffer is flushed by a direct write before buffer-
ing the new data. If the write data is larger than the
size of the allocated buffer, only a buffer size of data at
the end is buffered; the rest is written directly. Buffered
reads are carried out from the buffer if it contains at least
a portion of the requested data, and the nonbuffered por-
tion is read directly.

Buffered I/O is not asynchronous because LoRS does
not have an asynchronous I/O interface yet. Rather, it

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Depot 1 Depot 1Depot 0 Depot 0

A BC A BC

A

B

C

A

C

0

100

200

300

0

100

250

300

Before the write After the write

D

D

Figure 4. Status of an exNode before and after
“Write 150 bytes at offset 100.”

is a write optimization to coalesce several small writes
into few large ones to reduce both per-operation overhead
and the number of allocations and mappings created.4 It
can also reduce the number of actual I/O operations to
be performed if a certain buffered region is overwritten
or read multiple times. If asynchronous I/O becomes
available in LoRS, buffered I/O can further improve I/O
performance through write-behind and prefetching.

LN WriteContig first checks the current I/O mode.
Direct write is chosen when the buffer size is set to 0.
Otherwise, a buffered write is performed, which in turn
can issue direct writes. Direct write is performed by
the LoRS function lorsSetStore(), which creates a new
allocation, stores the data, creates mappings to it, and
places the mapping into a set.5 Data larger than the
block size is further divided to issue smaller writes.

A write to an unwritten portion of a file is performed
simply by calling lorsSetStore() and adding the newly
created mapping(s) to the exNode. However, an over-
write of existing mappings must go through four steps.
First, mappings that overlap with the write request are
removed from the exNode and put into a set. Second,
each mapping in the set is either removed, if the logical
extent that it points to will be completely overwritten,
or trimmed if it will be only partially overwritten. Third,
lorsSetStore() is called to write the requested data and
create new mappings to new allocations in another set.
Fourth, the two sets are merged, and the mappings in
the merged set are added to the exNode. Figure 4 shows
how an exNode is changed after an overwrite. The origi-
nal exNode contains three mappings to three allocations
(A, B, and C) across two depots for a 300-byte-long log-
ical file. When an operation that writes 150 bytes at
offset 100 is issued, the mappings to B and C overlap
with the write request, and they are either removed or
trimmed accordingly. The data is written to to a new
allocation D and the exNode is updated. In the figure,
only the shadowed portion of each allocation is mapped
to a portion of the logical file. For example, after the
write, only the second half of C is mapped to the file.
B is not mapped to the file anymore, but the allocation
remains until it expires or is revoked explicitly. If the

4For each write request, LoRS currently creates a separate al-
location and a mapping to it.

5In LoRS, a set is defined as a collection of mappings, on which
a common operation can be executed in batch.

depots supported write-at-offset, the overwrite could be
performed without additional allocation and the change
of mappings in the exNode.

LN ReadContig also checks the I/O mode first. If di-
rect read is set, mappings that overlap with the requested
extent are identified and put into a set. If the mappings
in the set form a contiguous extent, lorsSetLoad()

is called once for the set, which reads the allocations
pointed to by the mappings in the set. If holes6 are
formed by unwritten portions in the extent, however,
the current implementation of lorsSetLoad() will re-
turn an error when attempting to read that extent.
To get around this problem, LN ReadContig first iden-
tifies each contiguous region in the whole extent and
which mappings will form the region. Then, a separate
lorsSetLoad() for each contiguous region is issued, and
the results are combined in the user buffer.

Noncontiguous I/O. Noncontiguous I/O can be per-
formed in a few ways. A näıve approach issues a separate
I/O request for each contiguous region contained in the
extent, but this will incur overhead for each I/O opera-
tion issued. Another option, implemented by ROMIO, is
data sieving [15]. For a noncontiguous read, data siev-
ing reads the whole extent of the I/O request and picks
out only the regions that are requested. For a noncon-
tiguous write, data sieving reads the whole extent of the
request into a buffer, modifies the requested regions in
the buffer, and writes the whole buffer back. Since the
whole procedure must be performed atomically, however,
data sieving write works only with file systems that pro-
vide file locking, making it unsuitable for MPI-IO/L.

LN WriteNoncontig provides two different options. It
can simply reuse ROMIO’s näıve noncontiguous write
routine. Alternatively, it can optimize noncontiguous
writes by exploiting the fact that multiple mappings can
be flexibly generated to a single allocation. The data to
be written to the noncontiguous extent is first packed
into a contiguous memory buffer. Then, the packed data
buffer is written into one or more allocations (depending
on the packed data size relative to the block size). Next,
a separate mapping is created between each contiguous
region in the original extent and its corresponding por-
tion in the newly created allocation in the exNode. This
method resembles a log-structured file system in that
it stores noncontiguous regions contiguously. However,
LoRS currently does not provide a single API that cre-
ates multiple arbitrary mappings to a single allocation
(lorsSetStore() creates only one mapping per alloca-
tion). MPI-IO/L gets around this problem by calling
lorsSetStore() once to store the packed data, memory
copying the newly created mapping(s) multiple times,

6We distinguish two types of holes. If the holes result from
unwritten portions of the file, we treat them as the regions filled
with unknown values. But, if holes are formed by already expired
allocations, reading such region is considered to be an error.

modifying the offset and length fields for both logical
and physical allocation in each copied mapping accord-
ingly, and adding the modified mappings, not the ones
created by lorsSetStore(), to the exNode. All these
procedures are performed in memory.

The second approach is expected to perform better
than the näıve approach because it can significantly re-
duce the number of write calls and thus the overhead
associated with each invocation. Moreover, the manip-
ulation of mappings is done in memory and should be
efficient. However, it will create the same number of
mappings as the näıve approach. Also, even though a
set of contiguous regions is packed and stored in a single
allocation, future reads whose extents overlap with the
noncontiguous write extent cannot recognize this fact,
and thus be optimized accordingly, because the exNode
currently does not provide an efficient way to describe
such information. Users can choose which write option
to use by providing a hint at file open. The default is the
optimized approach.

LN ReadNoncontig also provides two options. The
näıve approach reads each contiguous region in the ex-
tent with a separate LoRS call. Alternatively, data siev-
ing can be used, because it does not require locking for
reads. Both approaches have trade-offs. While the näıve
read involves many more read calls and thus is likely to
incur higher overhead, data sieving causes extra data ac-
cess, which could be expensive for remote file systems.
Careful performance study is needed to decide which to
choose for a given noncontiguous read request. The user
can choose the method of noncontiguous reads by pro-
viding a hint at file open. The default is data sieving.

Since noncontiguous I/O implementations eventually
call file system-specific contiguous I/O calls, buffered I/O
can still be used, although each buffer is supposed to hold
a contiguous extent and thus is not of much help for
sparse noncontiguous I/O. The only exception is the op-
timized noncontiguous write, which does not call contigu-
ous write routine. In this case, if the current buffer extent
overlaps with the extent of the noncontiguous write re-
quest, we simply flush the buffer before taking actions
for the noncontiguous write.

Sync. An MPI-IO sync operation should cause all previ-
ous writes to be transferred to the storage device so that
the changes (both to file data and to metadata) made by
one process will be visible from other processes. How-
ever, IBP currently does not provide a mechanism for
a file data sync. Thus, LN Sync synchronizes exNodes
among processes only by having each process broadcast
the mappings that it has modified since the last synchro-
nizaion point and flushes the buffer on each process if
buffered I/O is used.

In addition to the in-memory exNode synchroniza-
tion, LN Sync combines the current content of the XML
file with the in-memory exNodes to incorporate changes

made by other groups of processes that concurrently
opened the same file. If the other processes wrote some
data to the file and called LN Sync, the XML files contain
new mappings that should be visible. After these steps,
every process will have identical in-memory exNode, and
then the root will serialize it to the XML file.
Other Functions. LN Delete simply deletes the locally
stored XML file. The allocations contained in the file
will be revoked when their expiration occurs. A more
proactive approach would be freeing the allocations at
the time of delete, but this could cause problems if some
of the allocations were shared with other exNodes.

LN Resize is implemented in two ways. First, if a
file needs to be expanded, the root writes one byte of
null data at the last offset. Second, if a file needs to
be shrunk, the mappings in the exNode are trimmed on
each process. LN Prealloc has the root write 0s to the
file from the next byte of the current last offset up to the
desired size. Both functions are collective and require
exNode synchronization so that non-root processes can
obtain the correct file size after the calls.

Atomic mode and shared file pointers have not been
implemented yet. The current implementation of both
atomic mode and shared file pointers in ROMIO requires
global locking at either the file system or the MPI level.
For MPI-IO/L, it has to be at the MPI level because IBP
does not provide locking. An implementation of byte-
range locks using MPI-2 passive target RMA (Remote
Memory Access) has been proposed [16]. However, be-
cause of the limitation in the current version of MPICH2
that requires MPI functions to be called for progress at
the target, we decided to wait until this deficiency is ad-
dressed.

3 Results

We conducted experiments between the Jazz Linux
cluster at Argonne National Laboratory and a selected
depot at the University of Tennessee at Knoxville. Jazz
comprises 350 nodes, each equipped with a 2.4 GHz Pen-
tium Xeon, either 1 or 2 GB of RAM, and 80 GB of local
disk space. Jazz nodes are connected by both Myrinet
2000 and Fast Ethernet, and we used Fast Ethernet for
the experiments to emphasize that remote I/O perfor-
mance is dominated by wide-area network bandwidth
rather than by the local interconnect. The XML files
were created and accessed on Parallel Virtual File Sys-
tem (PVFS). All the numbers were averaged over five or
more runs; the error bars show a 95% confidence interval.

3.1 Synthetic Benchmark Performance

We devised a synthetic benchmark that performs both
contiguous and noncontiguous I/O with various param-
eters from a single Jazz node to a single depot.

1

1.5

2

2.5

1 2 4 8 16 32 64
Write Size (MB)

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

1 MB Blk 2 MB Blk 4 MB Blk 8 MB Blk 16 MB Blk 32 MB Blk 64 MB Blk

Figure 5. Single-threaded contiguous writes.

2

3

4

5

6

7

8

9

10

11

1 2 4 6 8 12 16

Number of Threads

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

1 MB Blk

2 MB Blk

4 MB Blk

8 MB Blk

16 MB Blk

32 MB Blk

64 MB Blk

Figure 6. Multithreaded contiguous writes.

Contiguous I/O. Figure 5 shows the direct remote
write bandwidth for up to 64 MB of data, with a sin-
gle thread.7 For each transfer, we varied the block size,
to observe the effect of block size on performance. The
graph shows that the write bandwidth increases up to
certain point (2 MB here) but remains more or less the
same after that, because per-I/O request overhead be-
comes negligible compared to the actual transfer cost as
the data size increases. Also, for each write size, larger
block sizes increase write bandwidth because, with larger
block size, the number of I/O calls issued to transfer the
same amount of data decreases, and hence the aggregate
per-I/O request overhead also decreases. Because of the
space constraint, we show only the write performance
here. The reads showed a similar trend.

We also compared the performance of directly call-
ing lorsSetStore() and lorsSetLoad() to the numbers
shown above, to measure the MPI-IO and ADIO layer
overhead. The overheads observed were all less than 1%
of LoRS function costs, and thus negligible.

Figure 6 shows the multithreaded write performance
for 64 MB of data. We used up to 16 threads for con-
current transfer and also varied the block size. As men-
tioned, the unit of transfer in LoRS is a block, and each
thread transfers a block of data at a time. For each block
size, the number of threads times the block size did not
exceed the amount of data to be accessed.

The graph shows that the bandwidth increases as the
number of threads increases up to a certain point (about

7As mentioned, LoRS provides multithreaded data transfer us-
ing pthreads.

0

0.5

1

1.5

2

2.5

3

8M 4M 2M 1M 512K 256K 128K 64K 32K 16K 8K 4K 2K 1K

Unit write size (Bytes)

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

0

2

4

6

8

10

12

14

16

ex
N

od
e

S
iz

e
(M

B
)

buffered write direct write buffered write exNode size direct write exNode size

Figure 7. Buffered write vs. direct write.

8 here) and remains more or less constant after that. It
also shows that with the same number of threads, larger
blocks perform better. As the block size increases, how-
ever, the maximum degree of concurrency achievable de-
creases, and thus the overall maximum write bandwidth
cannot be reached with larger blocks. There are some ex-
ceptions where larger blocks perform worse than smaller
blocks with the same number of threads, such as 8 MB
block with 6 threads, because the amount of data to be
written cannot be a product of any of the block sizes
used in the experiments and these numbers of threads
and thus only a subset of threads will transfer the data
at the last round of transfer. This situation suggests that
the number of threads and block size should be carefully
chosen according to the expected amount of data to ac-
cess when large transfers are common. The threaded
read performance showed similar trends to the writes.

Figure 7 compares the performance of buffered writes
to that of direct writes. A total of 16 MB of data was
written using different write sizes, with a 16 MB block
size, a single thread, and a 16 MB buffer for buffered
writes. Direct write performs the same number of write
operations as the number of write operations issued,
while buffered write coalesces all the writes and per-
forms the write only once. The buffered write perfor-
mance shown in the graph includes the sync cost, while
direct write does not. The result shows that the direct
write performance drops significantly with larger number
of write operations because of per-operation overhead.
On the other hand, the buffered write performance stays
high regardless of the write size, because only one write
call is issued in all cases. In our extreme case with 1 KB
write size, buffered write performs more than 189 times
better than direct write. This suggests that buffered
write should be considered when a series of sequential
and contiguous writes are expected and extra memory is
available.

The dotted lines in the graph show the size of the
XML file that each configuration creates. For direct
writes, the size of the XML file increases as the write
size decreases and thus the number of created mappings
increases. With 1 KB write size, the XML file is larger
than 16 MB. On the other hand, buffered I/O minimizes

1

1.5

2

2.5

1 2 4 8 16 32 64
Number of Contiguous Regions

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

optimized

naïve

Figure 8. Noncontiguous write performance.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 4 8 16 32 64
Number of Contiguous Regions

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

15

17

19

21

23

25

27

29

31

33

A
m

ou
nt

 o
f D

at
a

R
ea

d
(M

B
)

data sieving naïve read amount (d.s.) read amount (naïve)

Figure 9. Noncontiguous read performance.

the number of writes performed to one, and the result-
ing XML file is a little over 1 KB. The size of XML files
affects the performance of file open, close, and sync that
read and write the XML file. The graph does not show
the effect of sync in direct I/O because the sync cost is
quite small compared to the actual write cost, but the
sync-only cost for direct write with 1 KB write size was
longer than the buffered write and sync cost combined.

Noncontiguous I/O. Figure 8 shows the performance
of the two noncontiguous write approaches with a 16 MB
block size and a single thread. We fixed the total amount
of data to be written to 16 MB but varied the number of
contiguous regions in the extent up to 64. In this access
pattern, the stride is twice the size of each contiguous re-
gion; that is, each contiguous region is followed by a hole
of the same size. The graph shows that the optimized
write performance is almost constant regardless of access
pattern, because it issues only a small number of write
calls (only one here) and the in-memory mapping ma-
nipulation is fast. However, the näıve write performance
degrades as the number of regions increases, because of
multiple I/O call overhead. The performance gap is ex-
pected to increase when finer access patterns are used.
The size of the resulting XML file is almost the same for
both approaches because the optimized approach does
not reduce the number of mappings, only the number of
allocations.

Figure 9 presents the noncontiguous read performance
using the same configuration. Here, 32 MB of data was
contiguously written to the depot prior to the access.
The graph shows that both data sieving and näıve read
performances decrease as the number of contiguous re-
gions increases, but for different reasons. The näıve read

� � � � �� � � � �� � � � �� � � � � � � � �� � � � 	 	 	 	 	

On file

� � � � � � � � �

�
�
�
�
�
�
�
�

In memory

� � � �
� � � �
� � � �
� � � �

.....

Figure 10. A 2 × 2 tile mesh and its file repre-
sentation.

performance degradation is due to the multiple I/O call
overhead. On the other hand, the decreased performance
for data sieving is due to the fact that the extent of
the noncontiguous read (and the amount of unnecessary
data read) increases with the number of contiguous re-
gions. The dotted lines show the total amount of data
that should be read for each approach.

As we keep increasing the number of regions, the data
sieving performance is expected to converge to half of the
16 MB contiguous read performance, as the total extent
to be read converges to 32 MB. However, the näıve ap-
proach performance is likely to keep decreasing as we
increase the number of regions, because of the exces-
sive number of read operations issued, and it is expected
to start performing worse than data sieving after some
point. Thus, it is important to find the balance point
and choose the faster approach according to the access
patterns.

We also tested noncontiguous read performance where
the data is read from a noncontiguously written file. In
this case, however, data sieving loses its benefit for finer
accesses because now a separate mapping exists for each
contiguous region and the data sieving will have to issue
multiple reads, one for each mapping, even though it
reads a contiguous extent from the logical file.

3.2 Tiled I/O Performance

The tiled I/O benchmark measures the performance of
representative I/O access patterns common in many par-
allel scientific applications—parallel I/O for distributed
multidimensional arrays. Tiles (subarrays) are created
by dividing a 2-D data set along each dimension, with
each process accessing a distinct tile. The tiles are writ-
ten to and read from a global row-major order file (Figure
10). In our experiments, 4096 × 4096 arrays with 4-byte
elements were distributed across a 4× 4 tile mesh, total-
ing 64 MB of data per array.

We tested both collective and noncollective ap-
proaches. Collective I/O may reorder data among pro-
cesses to issue fewer, larger contiguous I/O requests. For
example, for each global array access with the tiled I/O,
the data is reorganized so that ith process can contigu-
ously access ith region of the file when it is divided into
16 regions. Without collective I/O, each process should
access its own tile data in the file. As shown in Figure
10, however, rows in each tile are distributed across the
whole file, and thus accessing a tile will be noncontigu-

0

4

8

12

16

20

collective write noncollective write
(naïve)

noncollective write
(optimized)

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

write only write + sync

Figure 11. Tile write performance.

0

5

10

15

20

25

collective read noncollective read
(data sieving)

noncollective read
(naïve)

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

read only (tile-coll)

open + read (tile-coll)

read only (tile-noncoll)

open + read (tile-noncoll)

Figure 12. Tile read performance.

ous. But, unlike collective I/O, communication for data
reorganization among processes will not be required.

Figure 11 presents the tile write performance between
16 Jazz nodes and the same IBP depot used for previous
experiments, with a single thread and 4 MB block size.
Since many simulations store different data sets in differ-
ent files, and sync cost is visible with each file close, we
show both the bandwidth with and without sync. With
collective writes, the data is first shuffled among 16 pro-
cesses, and then each process concurrently issues a 4 MB
contiguous write request, resulting in 16 mappings and
allocations. Even though the local communication cost
is included, the collective write performs better than the
single process write with 16 threads shown earlier, be-
cause the data transfer is performed via multiple net-
work interface cards and also it does not incur the con-
text switching costs. With the sync cost included, the
collective write bandwidth drops by about 14%. Since
the sync cost depends on the number of mappings in
the exNode, if we collectively write larger data with the
same number of mappings by increasing the block size,
the performance drop caused by the sync is expected to
decrease more.

With the näıve noncollective writes, performance
drops significantly, because each process issues 1024 re-
mote write requests (1024 rows in the subarray), and
thus the overhead for multiple write requests adds up
and hurts the performance. This will create 16384 map-
pings in the exNode, and the resulting XML file will be
over 16 MB, 1024 times larger than the one generated for
collective write. This large exNode significantly increases

the sync cost. Indeed, in our experiments, the sync for
noncollective writes took more than twice as long as the
collective write and sync cost for the same data set.

With the optimized approach, the write-only band-
width becomes about 12% higher than that of the collec-
tive write because each process performs only one write
like the collective write, but local communication cost is
not involved. Also, the cost to create 1024 mappings on
each process is negligible. With the sync, however, the
bandwidth becomes almost one-fourth of the write-only
bandwidth, because the same number of mappings are
created as with the näıve approach; thus, sync becomes
expensive for the exNode with 16384 mappings.

Therefore, even with slightly worse write-only perfor-
mance than optimized noncontiguous writes, collective
write seems to be a clear winner among the three ap-
proaches, because it reduces the per-operation overhead
and the sync cost by issuing fewer writes and thus cre-
ating fewer mappings. More benefits of collective write
are described below.

The tile read performance was evaluated from two re-
mote files, one written collectively (tile-coll) and the
other written noncollectively with optimized noncontigu-
ous writes (tile-noncoll). Both consist of 16 alloca-
tions. The former contains one mapping to each alloca-
tion, while the latter contains 1024 mappings to each.

Figure 12 shows the tile read performance with and
without file open cost, to illustrate the effect of opening
a file with a large number of mappings. The sync cost
is negligible for read-only files and thus not included.
The graph shows that the collective read performance
with tile-coll yielded the best performance among the
configurations used, because collective read issues fewer,
larger remote read requests and thus reduces the per-
operation overhead. With the open cost, the bandwidth
drops about 25%. As mentioned, since the open cost
depends on the number of mappings in the exNode, the
gap between the two bars will decrease if we read larger
data with the same number of mappings.

Compared to the collective read with tile-coll, how-
ever, the collective read with tile-noncoll decreased
the performance by a factor of 17. The reason is that
even though collective read issues larger reads, each read
request is translated into many more small reads be-
cause of the way tile-noncoll was written. Also, the
open costs more than twice the collective read cost of
tile-coll. This again confirms why collective writes
can improve I/O performance in MPI-IO/L, in this case
by reducing the number of mappings in the exNode. The
way a file was written affects not only the sync perfor-
mance but also future open and read performance. When
tile-coll was read noncollectively with data sieving,
only about one-third of the collective read bandwidth
was achieved, because of the excessive reads. In our con-
figuration, the size of each tile is 4 MB, but the data

sieving reads almost 16 MB of data on each process.
Moreover, when the whole array is read with the data
sieving, each tile is read almost four times, while the
collective read avoids this redundancy. Thus, although
data sieving issues larger read requests, it is not always
a desirable option for distributed global array reads, es-
pecially with slow remote I/O, and hence its use should
be restricted for true noncontiguous I/O patterns. Read-
ing tile-coll noncollectively with the näıve approach
performs even worse than the data sieving. The näıve ap-
proach issues 1024 remote read requests on each process,
and the per-operation overhead for small reads hurts the
performance too much. With the open cost, the perfor-
mance drops about 10%.

When tile-noncoll is read noncollectively, however,
the data sieving performs much worse than the näıve ap-
proach. The näıve approach issues the same number of
remote read requests as for reading tile-coll, resulting
in similar performance. However, since the data sieving
reads extra data and these extra read requests are trans-
lated into many small reads because of the way the file
was written, more overhead is incurred. In our configu-
ration, almost four times more read requests are issued
for the data sieving than for the näıve approach, which
issues 1024 read requests on each process. We note that
even though larger read requests are made, they could
issue many small read requests according to how the file
was originally written.

For higher-dimensional data, this performance dis-
crepancy between reading collectively and noncollec-
tively written files is likely to increase because, with
higher dimensionality, more complex noncontiguous ac-
cess patterns that contain many more contiguous regions
are likely. Thus, the benefit of reducing the number of
mappings becomes even more important.

4 Discussion

Logistical Networking was not originally designed for
partial file access or parallel I/O. Typical users run com-
mand line tools to access remote files, and the original
design works well for such uses. For parallel I/O, how-
ever, its current design imposes limitations that might
seriously affect the performance. This section discusses
such issues and suggests how we can improve Logisti-
cal Networking to make it work better with parallel I/O
systems.
Downsizing exNodes. LoRS currently creates a new
allocation and a mapping to it for each write. Thus, fine-
grained writes or frequent updates to the file could result
in very large exNodes. With larger exNodes, open, sync,
and close, which access the XML representation of exN-
odes, become more time-consuming. Large exNodes also
take more memory on each process when stored in in-
memory structures and thus reduce the amount of mem-

ory that can be otherwise used for storage and buffering
of data. Moreover, it is not convenient to share such
bulky exNodes with other people.

Multiple options are available for downsizing the exN-
odes. First, applications can generate fewer mappings by
observing access patterns and eagerly using the available
optimizations. For example, buffered I/O and collective
I/O coalesce small I/O requests and thus reduce the num-
ber of actual writes. These approaches will also reduce
the overhead associated with each I/O call.

One can also change the in-file exNode representation
by rearranging the order of fields appearing in the file.
Currently, each mapping is listed separately, regardless
of the allocation it points to. With our optimized non-
contiguous writes, however, multiple mappings can point
to the same allocation. Mappings to the same alloca-
tion have identical values for certain fields, such as the
three long capability keys, and with the current repre-
sentation, these values are repeated. A better way to
avoid such redundancy is to introduce a hierarchy be-
tween allocations and mappings so that for each alloca-
tion, allocation-related information such as capabilities
appears first followed by the list of mappings associated
with the allocation. In addition to reducing the exNode
size, this approach provides an opportunity for noncon-
tiguous read optimization, as described below.

Other possibilities include the implementation of the
write-at-offset IBP that will simplify overwrites and
an off-line data rearrangement tool that contiguously
rewrites noncontiguously stored data to new allocations.

Efficient Noncontiguous I/O Support. The opti-
mized noncontiguous writes pack and write contiguous
regions in a noncontiguous extent into a single allocation.
But, because of the limitation of the current exNode rep-
resentation, the future reads whose extents overlap with
such noncontiguously written extent cannot detect this
fact and are not optimized properly. They issue separate
small read requests to the same allocation, rather than
reading the whole allocation at once.

If the exNodes are organized as proposed above where
mappings that point to the same allocation are grouped
under the allocation information, read could be further
optimized as follows. First, we identify the allocations
that overlap with the requested read extent. Next, for
each such allocation, we decide to perform either contigu-
ous or noncontiguous read by examining the mappings
that point to the allocation. If noncontiguous read is de-
tected, data sieving could be performed within that allo-
cation for better performance. Since this approach per-
forms data sieving on each allocation, instead of for the
whole noncontiguous extent, it could reduce the amount
of extra data read significantly.

If noncontiguous I/O is supported at the IBP level,
further optimization is possible. For example, list I/O
[15] describes a noncontiguous I/O access using a single

I/O interface, reducing the per I/O-call overhead. Sim-
ilarly, datatype I/O [7, 10] provides an interface where
a noncontiguous I/O pattern is described using an MPI-
derived datatype. Once the underlying file system under-
stands such advanced interfaces, it can better optimize
the noncontiguous I/O performance.

5 Related Work

A few efforts have provided remote I/O through MPI-
IO, all using ROMIO as the testbed. RIO [9] provided a
preliminary design and proof-of-concept implementation
of remote I/O in ROMIO. RIO used the ADIO layer for
portability and later work, including MPI-IO/L, followed
the same approach. However, RIO required a certain
processor configuration that could cause inefficiency and
relied on a legacy communication protocol. RFS [10] is
a recent work that removed RIO’s shortcomings. RFS
seeks to reduce the apparent write cost by overlapping
writes with subsequent computation phases through ag-
gressive memory buffering. Both RIO and RFS adopt
a client-server architecture, where a remote I/O request
from the client is shipped to the server and executed
there. On the other hand, MPI-IO/L translates each I/O
request into LoRS calls and relies on Logistical Network-
ing to take care of data transfer and storage. Remote I/O
using GridFTP for ROMIO [3] uses a similar approach.

Like Logistical Networking, specialized data transfer
and storage services such as GridFTP [2], Kangaroo [14],
and GASS [6] can be used as a means of wide-area data
transfer for I/O libraries. These mechanisms provide use-
ful remote I/O features such as secure communication, a
chainable server architecture, and workload-specific I/O
optimizations. A metadata catalog system such as the
MCAT in the Storage Resource Broker (SRB) [4], which
is used to identify and discover resources and data sets
of interest using their attributes instead of physical file
names, is another useful feature to have in an I/O system.
For Logistical Networking, a simple Web-based catalog
system called Logistical Distribution Network (LoDN)
was built recently. The use of LoDN together with MPI-
IO/L will further improve the usability of the system.

6 Conclusions

We have presented the design and implementation of
MPI-IO/L, an efficient remote I/O system for MPI-IO
using Logistical Networking. Leveraging Logistical Net-
works, MPI-IO/L enables high-performance remote I/O
and provides a flexible way to describe and share remote
files. Our implementation with ROMIO provides var-
ious options for basic I/O operations so that the user
can choose the I/O methods that work the best for her
own application’s I/O needs. We have also identified a

number of areas in which Logistical Networking could be
improved to better suit the needs of parallel I/O.

References

[1] NCSA HDF home page. http://hdf.ncsa.uiuc.edu.
[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak,

I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Ques-
nel, and S. Tuecke. Data management and transfer
in high performance computational grid environments.
Parallel Computing Journal, 28(5):749–771, 2002.

[3] T. Baer and P. Wyckoff. A parallel I/O mechanism for
distributed systems. In Proceedings of the International
Conference on Cluster Computing, 2004.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC storage resource broker. In Proceedings of the
IBM Centers for Advanced Studies Conference, 1998.

[5] M. Beck, T. Moore, and J. Plank. An end-to-end ap-
proach to globally scalable network storage. In Proceed-
ings of SIGCOMM, 2002.

[6] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and
S. Tuecke. GASS: A data movement and access service
for wide area computing systems. In Proceedings of the
Workshop on Input/Output in Parallel and Distributed
Systems, 1999.

[7] A. Ching, A. Choudhary, W.-K. Liao, R. Ross, and
W. Gropp. Efficient structured access in parallel file
systems. In Proceedings of the International Conference
on Cluster Computing, 2003.

[8] I. Foster and C. Kesselman, editors. The Grid 2:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 2003.

[9] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogill.
Remote I/O: Fast access to distant storage. In Proceed-
ings of the Workshop on Input/Output in Parallel and
Distributed Systems, 1997.

[10] J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett.
RFS: Efficient and flexible remote file access for MPI-
IO. In Proceedings of the International Conference on
Cluster Computing, 2004.

[11] J. Li, W.-K. Liao, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale.
Parallel netCDF: A high-performance scientific I/O in-
terface. In Proceedings of SC03, 2003.

[12] Message Passing Interface Forum. MPI-2: Extensions
to the Message-Passing Standard. 1997.

[13] J. Plank, S. Atchley, Y. Ding, and M. Beck. Algorithms
for high performance, wide-area distributed file down-
loads. Parallel Processing Letters, 13(2):207–224, 2003.

[14] D. Thain, J. Basney, S.-C. Son, and M. Livny. The
Kangaroo approach to data movement on the Grid. In
Proceedings of the Symposium on High Performance Dis-
tributed Computing, 2001.

[15] R. Thakur, W. Gropp, and E. Lusk. On implementing
MPI-IO portably and with high performance. In Pro-
ceedings of the Workshop on Input/Output in Parallel
and Distributed Systems, 1999.

[16] R. Thakur, R. Ross, and R. Latham. Implementing
byte-range locks using MPI one-sided communication.
In Proceedings of the European PVM/MPI Users’ Group
Meeting, 2005.

