Pathways into Large Parameter Search Spaces: Experiences with Molecular Hyperdynamics

Justin M. Wozniak, Santanu Chatterjee, Paul Brenner, Douglas Thain, Aaron Striegel and Jesus A. Izaguirre

11th September 2008

Current location: Argonne National Laboratory, USA
wozniak@mcs.anl.gov
Scientific Repositories

- Start with user data requirements

```plaintext
type = dna
temperature = 300
integrator = langevin
```
Scientific Repositories

- Cluster-based simulation storage infrastructure
Scientific Repositories

- The desktop grid reality - we just have a lot of computers
- GEMS: Grid-Enabled Molecular Simulation
The Cooperative Network

- Where can I put my data?
- How can I keep it available?
- How will I find it again?
Motivation

- User needs:
 - Large scale file space
 - File organization
 - Storage site management
 - Access for existing software
 - **Workflow structures for large scale projects**

- Available resources:
 - Large, uncontrolled storage network
 - A searchable, parameterized replica management system
Outline

I. Runtime repositories
 - Database abstractions
 - Basic utilities

II. Workflow-like structures
 - Application in hyperdynamics
 - Event-driven workflows
 - Scalable job submission
A Storage Control Layer

- Repository users expect a high level abstraction layer
- The controller enables user-level administration of a dynamic system
Puts & Gets

- Automatic replica placement and location

GEMS API

USER

Existing API

REPOSITORY

- **GEMSput**
 - name=sorin
 - app=sim
 - seed=149

- **GEMSmatch**
 - name=sorin
 - app=sim
 - --key

- **GEMSget** KEY

- Storage placement map
 - { wombat, helios }

Examples:

- F.1
- F.2

- $KEY(s)$
GUI for General Purpose Operations

● Parameterized intermediate workflow data is easily browsed.
• Are these files available?
Fault Prioritization

- Automatically detect, prioritize, and correct faults
Parameterized Storage Organization

- Data structures support application-specific tagging and searches
Parameterized Storage Organization

- File placement managed by user-supplied topology information
Parameterized Storage Organization

- Topology information may be tapped when placing jobs or accessing replicas

USER

CONTROLLER

WOMBAT

SC0

PURDUE
Computation Among Replicas

- Replica-aware computing framework
Replica System Methods

- Basic methods:
 - Simple puts & gets
 - Replica location
 - Replica access site evaluation

- Streaming methods:
 - Advanced disk space reservation
 - I/O setup
 - I/O translation
Replica System Examples

- Archive creation

 obtain sink:

 > GEMSreserve 100MB

 pipe command output:

 > tar c dir | sink

 or use parrot:

 > parrot tar cf sink dir

- Job I/O setup

 > GEMSrun

 --input INPUT /$KEY/file.1

 name=Justin job=3

 --output OUTPUT file.2

 --exec job INPUT OUTPUT

- Simple shell setup for streaming replica system I/O
Example application: Hyperdynamics

- Enhanced, user-steered molecular simulation technique
- Algorithm implementation enhanced by the *data sweep* abstraction
Parameterized intermediate workflow data is easily accessed, rendered, and used.
Parameterized Workflow

- u, r: Parameter sweep variables (e.g. user, random seed)

- Parameter sweep dependency over time: (checkpointing)

 \[S(u, r, t) : \]
 \[S(u, r, t - 1) \]

- Parameter dependency with branches:

 \[S(u, r, t, \text{branch} = p) : \]
 \[S(u, r, t - 1, \text{branch} = p) \]
 \[\text{or} \ S(\text{id}entity = p, \text{time} = t - 1) \]
Notification Tools

- Workflow element script

 wait for match:
 > GEMSnotify user=sorin
 > \(r=4 \ t=3 \)

 generate new record:
 > GEMSrun ...

- Simply parameterize and send to background...
 (how much space is in the background?)
Scalable Notification

- Bottlenecking procedure allows for progress while limiting consumption of system resources.
Hyperdynamics Results

- Results for small simulated system (400 Argons)

<table>
<thead>
<tr>
<th>Method</th>
<th>Total (hours)</th>
<th>Turnaround (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYD-DEPTH</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>HYD-BREADTH</td>
<td>5800</td>
<td>1.4</td>
</tr>
<tr>
<td>HYD-EXPLORE</td>
<td>6.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>
I/O Ratio

- I/O Ratio
Recap

I. Storage management for distributed repositories
 - Virtual clustering, puts & gets
 - Fault prioritization, control loop framework
 - Parameterized abstraction layer
 - Data access for computation

II. Workflow model based on parameterized objects
 - Hyperdynamics application
 - Workflow formulation
 - Notification tools
 - Scalability
Summary of Results

- A controller model can help users administrate *ad hoc* storage networks.
- Prioritized storage management can improve data durability.
- Replica management systems can be integrated within a computation infrastructure.
- Parameterized workflows can form a simple building block for distributed data operations.

- **GEMS** is open source:
 http://sourceforge.net/projects/gems-nd
Acknowledgments

• Collaborators:
 - Paul Brenner
 - Santanu Chatterjee
 - Douglas Thain
 - Aaron Striegel
 - Jesus Izaguirre
• NSF DBI-0450067
Future Work

- Formalization of the parameter generation and arithmetic
- Real-world applications of *grid derivation*.
- Repository interoperability for hybrid systems.
- Performance analysis for more complex cases.
• Icon workshop