
Scaling Deep Learning for Cancer with
Advanced Workflow Storage Integration
Justin M. Wozniak1, Philip E. Davis2, Tong Shu3, Jonathan Ozik4, Nicholson Collier4,

Manish Parashar2, Ian Foster1, Thomas Brettin5, and Rick Stevens6

1 Data Science & Learning, Argonne National Laboratory and University of Chicago
2 Rutgers University

3 Mathematics & Computer Science, Argonne National Laboratory
4 Decision and Infrastructure Sciences, Argonne National Laboratory and University of Chicago

5 Computing, Environment, and Life Sciences, Argonne National Laboratory
6 Computing, Environment, and Life Sciences, Argonne National Laboratory and University of Chicago

Abstract—Cancer Deep Learning Environment (CANDLE)
benchmarks and workflows will combine the power of exascale
computing with neural network-based machine learning to ad-
dress a range of loosely connected problems in cancer research.
This application area poses unique challenges to the exascale com-
puting environment. Here, we identify one challenge in CANDLE
workflows, namely, saving neural network model representations
to persistent storage. In this paper, we provide background on
this problem, describe our solution, the Model Cache, and present
performance results from running the system on a test cluster,
ANL/LCRC Blues, and the petascale supercomputer NERSC
Cori. We also sketch next steps for this promising workflow
storage solution.

I. INTRODUCTION

Data management is a critical part of emerging deep learn-
ing architectures [19]. Training neural networks demands high-
end CPUs, GPUs, and other accelerators, but these workloads
start with loading large amount of training data and end with
the storage of large representations of the weights in the
neural networks. Training data sets can be very large, e.g.
thousands of hours of driving video or petabytes of genomics
data, making typical training cycles read-intensive. Some
workloads, however, such as hyperparameter optimization or
population-based training generate, store, and reload many
network models over time. This is in addition to checkpointing
for fault recovery. In this work, we consider the problem of
storing neural network models (NNs).

The CANcer Deep Learning Environment (CANDLE) ap-
plication suite enables top-tier supercomputing systems be
applied to three key problem areas in cancer research, the
RAS pathway problem, the drug response problem, and the
treatment strategy problem. The initial release of the ap-
plication framework CANDLE/Supervisor [41] addresses the
problem of hyperparameter exploration for NNs. Initial results
involving applications from the CANDLE project running on
DOE systems at OLCF Titan, ALCF Theta, and NERSC Cori
demonstrate both scaling and multi-platform execution.

The ultimate goal of CANDLE is to develop high-quality
NNs to address their target cancer problems. Its hyperparame-
ter optimization workflow then generates and evaluates many
single-node NN configurations on many nodes, with each node

evaluating one configuration after another. The total data gen-
erated from evaluating C configurations is thus C×M , where
M is the memory of a single node in bytes; if a computer has
N nodes, each able to evaluate a configuration in T seconds,
then data is generated at a rate of M ×N / T bytes/second.
For example consider the growth in potential write rate over
the last generation of DOE computing installations:

• On Cori [1], we have M=16 GB, N=9,000, and T=3,600
for a sustained rate of 40 GB/s.

• On Summit [2], we have M=512 GB, N=4,608, and
T=3,600 for a sustained rate of 655 GB/s.

As computers increate in speed and scale, these rates will
increase rapidly.

Thus, there is a great deal of data, more than can be expected
to be written to persistent storage. Since low-quality NNs
do not have to be saved, we can perform online analysis
of the model ensemble and reduce the storage access by
simply discarding the low-quality NNs. Thus, a high-speed
cache is needed.. Our specific solution to this problem is the
Model Cache, a system that temporarily stores the NNs until
analysis and reduction are performed. This solution integrates
the Swift/T workflow system and the DataSpaces cache storage
system.

This paper offers the following: (1) a description of several
machine learning-based workflows relevant to cancer; (2)
an architecture for caching intermediate neural network data
products; and (3) performance results from running the system
on large-scale systems.

The remainder of this paper is organized as follows. In §II,
we describe the aspects of machine learning relevant to this
work. In §III, we describe the three CANDLE applications
currently being developed. In §IV, we describe the background
of the components of the new Model Cache. In §V, we
describe the architecture of the CANDLE/Supervisor software
system and its integration with the Model Cache. In §VI, we
describe the practicalities and portability issues. In §VII, we
describe performance results from these systems. In §IX, we
describe future work, and we conclude in §X.



II. USE CASES

Machine learning (ML) has the capability to transform
many scientific problems. In response to the growing power
of ML techniques and the increasing available computing
power at large scale computing facilities, the U.S. Department
of Energy Exascale Computing Project (ECP) launched the
Cancer Deep Learning Environment (CANDLE). CANDLE
is developing a suite of software to support scalable ML, and
in particular deep learning (DL), that is, ML with multi-layer
neural networks, on DOE supercomputing resources. While
CANDLE is focused on three cancer pilot projects in the near
term, its longer-term goal is to support a wide variety of DL
applications across DOE science domains.

A. Deep learning frameworks

Numerous research groups in both industry (Google, Face-
book, Microsoft, etc.) and academia (Berkeley, Oxford,
Toronto, etc.) are developing DL frameworks. Popular frame-
works include Caffe [22], Keras [11], Theano [37], Torch [14],
Poseidon [42], Neon [35], TensorFlow [3], CNTK [28], and
the Livermore Big Artificial Neural Net (LBANN) [38]. Each
of these frameworks differ with respect to the ML tasks
they target, their ease of use, data pre-processing, and target
problems. Most frameworks were architected for a single
node implementation and a few distributed memory multi-node
implementations have recently emerged; but these implementa-
tions are primarily targeted at smaller core counts and for com-
modity cluster environments. Moreover, these implementations
rely on avoiding communication by storing data on local
disks. Implementations targeting high-performance computing
systems will need novel techniques to fully exploit these
systems’ specialized interconnect bandwidth and topologies,
and deep memory hierarchies.

B. Deep learning background

Fig. 1: Simple neural network.

The artificial neu-
ral networks used
in CANDLE com-
prise a set of lay-
ers, each with one
or more nodes, and
connected via links
that send data from
one node to another.
Each node in each
layer applies some
function to its input
values to determine the data that it should forward to the
node(s) to which it is connected in the next layer. Using
notation defined by Nielsen [24] and illustrated in Figure 1,
the jth node in layer l has bias blj and output (aka activation)
alj , and defines a weight wl

jk for the connection from the kth
node in layer l − 1. Then:

alj = K

(∑
k

wl
jka

l−1
k + blj

)

where the activation function K is some predefined function,
such as the hyperbolic tangent or sigmoid function, that allows
for a smooth but nonlinear mapping from input to output.

We provide this background information to explain the
nature of the computational challenges faced in CANDLE.
As shown in Figure 2, we can think of the process by which
a DL model is developed and applied as a pipeline involving
distinct model selection, model training, and inferencing steps.

Model selection, also known as hyperparameter optimiza-
tion, is concerned with selecting the NN architecture that is to
be used for an application: that is, the DL method to be used
and the set of layers, nodes, and links on which that method
will be applied. This process is largely ad hoc and artisanal,
combining expert knowledge and judgment (e.g., to select a
DL method and place constraints on the NN architecture) with
large-scale computation to explore architectural variants—the
latter phase being the hyperparameter optimization process.

Model selection requires a mechanism for evaluating dif-
ferent DNN architectures. Typically this involves first a model
training run, in which the DNN is trained on a given training
data set and validated repeatedly against a test data set. The
training run is performed over a series of epochs, in which
the weight of each node in a particular DNN architecture is
adjusted to minimize the error in the output values for the
complete set of training data, and then an evaluation step
where a second hold-out set of data are used to evaluate the
trained model, yielding a score.

A common approach to training is to use an algorithm
called gradient descent to find the set of weights over all
nodes that collectively minimize the error in the validation.
This training process is complex, with many algorithms and
algorithm variants proposed that variously improve the quality
of the minimum value (e.g., by avoiding local minima in
the optimization) and/or reduce computational requirements.
The training process can be correspondingly computationally
expensive.

Finally, inferencing, also known as scoring, is concerned
with applying a trained DNN to a particular input (e.g., new
cancer patient data) to obtain a new output (e.g., proposed
treatment solution). The data and computation involved in this
phase are typically much smaller than that involved in the
selection or training phases. This provides the value (F (p))
that is optimized by the overall workflow.

In the work reported here, we are concerned primarily with
the hyperparameter optimization problem to apply automated
optimization techniques to enhance the role of human expertise
when designing NNs.

C. Hyperparameter optimization

The hyperparameter optimization problem is to find, among
the space of all possible DNN architectures, the combination
of DL method and associated layers, nodes, and links that
yields the best, or at least satisfactory, performance on some
supplied test data. The number of possible architectures can
be extremely large: easily O(1021) in the current CANDLE
workflows, as described below.

2



Model	
selection

Model	
training Inference

Training	
data

Q

A

Training	
data

Human
expertise

model
architecture

trained	
model

Fig. 2: A schematic view of a typical DL model development and
application process. Feedback loops may apply, as when new data
or poor inferencing results leads to repeated model training or
even repeated model selection.

The architecture of an NN is heavily parameterized. The
design parameters broadly include the number of layers,
neurons per layer, activation function, and so on. The quality
of the network is essentially its accuracy; a loss function F
is determined such that its value is a measure of the error in
the trained network behavior when applied to a validation set.
The hyperparameter optimization problem is to minimize F (p)
across all parameter sets p in the parameter space P . However,
P is large and F is expensive. P is the cross product of all
valid network settings, some of which may be categorical,
some integer, and some continuous. Evaluating F involves
training the network on a training data set and applying it
to a validation set, a task that can take minutes, hours, or
longer. In the end we must collect, for each parameter set (p),
the associated NN model representation (i.e., the result of the
training process) and the resulting F , as well as other data for
profiling or validation.

With such large state spaces, it is rarely feasible to perform
an exhaustive search. Grid search methods, which define a few
possible values for each parameter and then evaluate every
feasible combination of those parameters, rarely perform well
as they cover too little of the space; random search methods
often perform better but are still not adequate. Simple gradient
descent or multiple gradient descent can reduce the number
of configurations in the search space that must be evaluated
by one or two orders of magnitude, but that still leaves an
intractable problem,

Various frameworks and libraries implement more sophisti-
cated methods for exploring larger hyperparameter spaces. For
example, HyperTune [27] uses Bayesian optimization to refine
network hyperparameters. Another alternative is the popular
Python library, SciKit-Learn [26], a multipurpose ML library
for Python (easily integrated with Keras) that can be used
for hyperparameter search. HyperOpt [7], a hyperparameter
search framework that is designed to perform searches using
distributed hardware, has a SciKit-Learn variant [6]. Genet-
ic/evolutionary algorithms may also be applied. An imple-
mentation of genetic algorithms for hyperparameter search
is the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [34]. Another system for evolutionary algorithms for
hyperparameter tuning is Optunity [12], which works with the
Distributed Evolutionary Algorithms in Python (DEAP) [18]
framework that implements different, generalized evolutionary
algorithms.

The system that we used in this work is mlrMBO [9], a
R-based black-box optimization package that uses a surrogate

regression model to guide the function evaluations required
to approximate a given objective function. It supports mixed
continuous, categorical, and conditional parameters. mlrMBO
follows a Bayesian optimization [8] approach, as follows.
In the initialization phase, ns configurations are sampled
at random, evaluated, and a surrogate model M is fitted
to the input-output pairs. In the iterative phase, the model
M is used to identify nb promising input configurations at
each iterations, which are then evaluated with the function
(in our case, by performing model training and evaluation).
These configurations are selected using an infill criterion that
seeks to trade off exploitation and exploration by choosing
configurations that either have a good expected objective value
(exploitation) or high potential to improve the quality of M
(exploration). The algorithm terminates when a user-defined
maximum number of evaluations and/or wall-clock time is
exhausted.

Crucial to the effectiveness of mlrMBO is the choice of
the algorithm used to fit M and the infill criterion. Given the
mixed integer parameters in the hyperparameter search, we
used random forest [10] because it can handle such parameters
directly, without the need to encode the categorical parameters
as numeric. For the infill criterion, we used qLCB [20], which
proposes multiple points with varying degrees of exploration
and exploitation.

We use the Extreme-scale Model Exploration With Swift
(EMEWS) [25] framework to drive many concurrent model
evaluations. This framework uses the Argonne-developed
Swift/T [40], [4] language to distribute the model exploration
workload efficiently across a multi-node system. We have
previously used it to explore spaces of size O(1091) [13].

III. WORKFLOWS

We next describe the three pilot cancer problems that moti-
vate the design of our systems solution. While each challenge
is at a different scale (i.e., molecular, cellular, population)
and has a specific scientific team collaborating on the data
acquisition, data analysis, model formulation, and simulation
runs, they also share several common threads. Common sets
of cancer types appear at all three scales, all have to address
significant data management and data analysis problems, and
all need to integrate simulation, data analysis, and DL. CAN-
DLE is investigating three promising pilot applications of DL
technology to cancer research [41]:

P:RAS – The RAS pathway problem. The RAS/RAF
pathway is a series of chemical events that is implicated in
30% of cancers. The goal of this pilot is to understand the
molecular basis of key protein interactions in this pathway.
We expect this capability to accelerate the identification and
development of effective therapeutics targeting cancers driven
by RAS mutations, including the three deadliest cancers occur-
ring today: pancreatic, lung, and colon. This approach starts
with a set of outputs from large-scale molecular dynamics
simulations, to which unsupervised learning is applied to
uncover features that can be used to describe the state space

3



of protein movement and binding, producing a higher-level
surrogate model. This higher-level model can then be used
to explore (far more efficiently) the possible dynamics of
RAS interactions, delivering many millions of hypothetical
trajectories that are then scored according to likelihood. By
investigating (through direct numerical simulation) the most
likely of these trajectories, we close the loop—testing our
hypothesis and then learning from the results. Any new infor-
mation is used to refine the definitions of likelihood and affect
future hypothesis. We expect this use of ML plus molecular
dynamics to develop and test protein binding hypotheses
to enhance our understanding of RAS signaling pathways
dramatically.

P:DRUG – The drug response problem. The goal of this
pilot is to develop predictive models for drug response that
can be used to optimize pre-clinical drug screening and
drive precision medicine-based treatments for cancer patients.
integrate information about drug molecular structures, drug
interactions, drug combinations and drug molecular targets
with information about the patient’s genetics, including their
baseline genotype as well as the specific genetics and other
molecular and cellular properties of their tumor, including
gene mutations, gene expression patterns, proteome, transcrip-
tome including small and non-coding RNAs, metabolomics,
prior treatments, co-morbidities and environmental exposure.
Our current working data contains drug and drug-like molec-
ular screening data from over 300,000 compounds that have
been tested on at least 60 cell lines, giving us O(107) training
cases.

P:TREAT – The treatment strategy problem. The goal
of this pilot is to automate the analysis and extraction of
information from millions of cancer patient records to deter-
mine optimal cancer treatment strategies across a range of
patient lifestyles, environmental exposures, cancer types and
healthcare systems.

Traditional natural language processing (NLP) algorithms
have been developed to automate this process, using carefully
crafted keyword-based rules for information extraction. How-
ever, the tremendous variation in clinical expression and the
large size of the controlled medical vocabularies (containing
more than 100,000 medical terms and expressions describing
diseases, conditions, symptoms, and medical semantics that are
typically present in unstructured clinical text) mean that hand-
engineered rule extraction is neither scalable nor effective
for large-scale clinical deployment. DL has the potential
to address these challenges and capture both semantic and
syntactic information in clinical text without requiring explicit
knowledge of clinical language.

IV. FRAMEWORKS

In this section, we describe the two systems we brought
together to construct the Model Cache.

A. Swift/T
Swift/T [40] is the workflow system used by CANDLE to

control hyperparameter search and other ensembles such as

uncertainty quantification. This system revolutionized high-
performance workflows by supporting fully in-memory work-
flows that combine in-memory libraries and data into a com-
posite application capable of representing a complete compu-
tational experiment in a lightweight script. A key part of this
effort involved scaling the workflow enactment system into
a fully parallel runtime [39] as well as developing compiler
optimizations for distributed dataflow processing [4]. The
system can thus maintain trillions of tasks, executing billions
per second across petascale machines.

The Swift/T architecture is based on a handful of premises:
1) The workflow system should run inside one big allocation

on the machine, and not rely on the login nodes or other
site-specific features.

2) The workflow system should be developed by program-
ming against standard APIs such as MPI, and not rely on
non-standard systems features.

3) The workflow system should be able to invoke user code
through library interfaces or scripting language interfaces
(e.g., Python, Tcl) without launching external processes.

4) Workflow progress should be possible without accessing
the filesystem (operating on in situ data).

These design premises made Swift/T a natural fit for deep
learning workflows on HPC systems.

B. DataSpaces

DataSpaces [16] is a scalable data-staging substrate that
supports advanced coordination and interaction services. Data-
Spaces provides the abstractions and mechanisms to support
flexible and dynamic inter-application coupling and interac-
tions at runtime, and supports asynchronous data insertion and
retrieval to/from the staging area. It provides simple put/get
semantics for applications to exchange data through a shared
space abstraction. The DataSpaces runtime enables direct
memory-to-memory communication between the interacting
nodes using Remote Direct Memory Access (RDMA).

The goal of the DataSpaces abstraction is to enable the live
data of interest, which is extracted from a running application,
to be efficiently indexed, and asynchronously accessed and
processed by other components in the application workflow.
The data of interest can be dynamically specified as tuples.
Tuples are essentially key-value pairs, and the keys are defined
using an application-specific address space.

Applications use DataSpaces to avoid the latency of parallel
file-systems caused by concurrent accesses by multiple inde-
pendent tasks and also to accelerate data transfers, with less
variability compared to using persistent storage systems such
as files or databases.

C. Integration: The SDS Module

The Swift-DataSpaces (SDS) module is a generic Swift/T
extension library that allows workflows to share data using the
DataSpaces tuple space, in accordance with the Swift/T design
premises (§IV-A). The module is based on the following
typical plan for Swift/T extensions:

4



1) Swift/T can call directly into C functions, such as the
DataSpaces API, if they have a Python or Tcl wrapper.

2) We can easily use SWIG to generate Tcl wrappers for C
libraries.

3) We then can write Tcl programs that use DataSpaces.
4) We can produce concise Swift/T functions that use the

Tcl functions.
5) Then we can write highly concurrent Swift/T workflows

that directly access DataSpaces (without forking external
tools); that is, DataSpaces is part of the workflow system.

This SWIG-based approach is a popular way to access
compiled code from higher-level languages such Python, and
is used by many scientific projects such as PETSc, Trilinos,
and NAMD. Swift/T can directly access Tcl functions, so we
can create a Tcl interface and produce Swift/T wrappers for
these functions with minimal coding effort.

Swift/T workflow

dataspaces_serverdataspaces_server

22

33

proc sds_kv_put { key value } { … }

SWIG-generated libsds.so

sds_kv_put(string key, string value);sds_kv_put(string key, string value);11

dspaces_put(char* var_name, …, char* data);

libdspaces.so

44

Fig. 3: Callstack used when Swift/T calls DataSpaces functions.

As shown in Figure 3, the Swift/T programmer simply
programs against a simple string/string key/value API 1 .
Behind the scenes, this is translated into a Tcl function 2 ,
which invokes the C-based DataSpaces API 3 . The data is
then moved over the network to the DataSpaces server 4 .

Our prototype API simply provides features to move strings
and whole (binary) files into and out of DataSpaces. This
is a simplified API for users like CANDLE that only need
these features at this point. In the near future, we plan to
add support for the richness of the DataSpaces API, including
multidimensional arrays and variably-typed, slice-based data
access.

V. ARCHITECTURE

Emerging multi-petaflop supercomputers are powerful plat-
forms for ensembles of neural networks that can address many
problems in cancer research, but it is difficult to assemble
and manage large studies on these machine, which have tens
of thousands of compute nodes. Typical workflow approaches
would face challenges due to system scale, system complexity,
management of complex workflow patterns, integration with
disparate software packages, and data acquisition. CANDLE/-
Supervisor addresses the problem of hyperparameter opti-
mization for cancer-based problems, and solves the common
workflow challenges outlined above.

A. Hyperparameter search framework

To support the search patterns described in §III, we de-
veloped the CANDLE/Supervisor architecture diagrammed in
Figure 4. The overall goal is to solve the hyperparameter
optimization problem to minimize F (p), where F is the
performance of the neural network parameterized by p ∈ P ,
where P is the space of valid parameters.

The optimization is controlled by an Algorithm 1 selected
by the user. The Algorithm can be selected from those pre-
viously integrated into CANDLE, or new ones can be added.
These can be nearly any conceivable model exploration (ME)
algorithm that can be integrated with the EMEWS 3 soft-
ware framework. EMEWS [25] enables the user to plug in ME
algorithms into a workflow for arbitrary model exploration;
optimization is a key use case. The ME algorithm can be
expressed in Python or R. This is implemented in a reusable
way by connecting the parameter generating ME algorithm
and output registration methods to interprocess communication
mechanisms that allow these values to be exchanged with
Swift/T. EMEWS currently provides this high-level queue-like
interface in two implementations: EQ/Py and EQ/R (EMEWS
Queues for Python and R). The Algorithm is run on a thread
on one of the processors in the system. It is controlled by a
Swift/T script 2 provided by EMEWS, that obtains parameter
tuples to sample and distributes them for evaluation.

The Swift/T [40], [4] workflow system is used to manage the
overall workflow. It integrates with the various HPC schedulers
(§VI) to bring up an allocation. A Swift/T run deploys one or
more load balancers and many worker processes distributed
across compute nodes in a configurable manner. Normally,
Swift/T evaluates a workflow script and distributes the result-
ing work units for execution across the nodes of a computer
system over MPI. Swift/T can launch jobs in a variety of ways,
including in-memory Python functions in a bundled Python
interpreter, shell commands, or even MPI-based parallel tasks.
In this use case, however, workflow control is delegated to the
Algorithm via the EMEWS framework, which provides the
Swift/T script.

During an optimization iteration, the Algorithm produces a
list of parameter tuples 4 that are encoded as arguments to a
Python-based Wrapper script 5 . These wrapper scripts are
the interfaces to the various CANDLE Pilot applications. The
parameters are encoded in JavaScript Object Notation (JSON)
format which can be easily converted by the Python Wrapper
script into a Python dictionary, from which a CANDLE Pilot
application can retrieve the parameter values. These scripts
are run concurrently across the available nodes of the Swift/T
allocation, typically one per node. Thus, the DL has access to
all the resources on the node. The DL is the underlying learn-
ing engine; we have tested with Theano and TensorFlow. The
Pilots are Python programs that implement the application-
level logic of the cancer problem in question. They use the
Keras interface to interact with the DL and are coded to
enable the hyperparameters to be inferred from a suitable
default model file, or to be overwritten from the command line.

5



It is this construction that allows the parameter tuples to be
easily ingested by the respective Pilots, and use a standardized
interface developed as part of the project.

The result of a Wrapper execution is a performance mea-
sure on the parameter tuple p, typically the validation loss.
Other metrics could be used, including training time or some
combination thereof. These are fed back to the Algorithm
by EMEWS to produce additional parameters to sample. The
results are also written to a Solr-based Metadata Store 7 ,
which contains information about the Wrapper execution.
The Metadata Store accesses are triggered by Keras callback
functions, which allow Wrapper code to be invoked by Keras
at regular intervals. Thus, a progress history is available for
each learning trial run, as well as for the overall optimization
workflow. Good models can also be selected and written to a
Model Store.

Petascale computer

Swift/T

EMEWS

AlgorithmAlgorithm

ScriptScript
WrapperWrapper

Pilot

Keras

DL

Model StoreModel Store Metadata StoreMetadata Store

Hyperparameters p ∈ P

Results F(p)

11

22

33

55

44

66

77

Fig. 4: CANDLE/Supervisor original architecture.

B. Key contribution: The Model Cache

Conceptually, CANDLE Model Store contains all trained
models produced by the system, which in practice means that
it is the size of system memory, multiplied by the number
of iterations carried out, which in our current applications
are performed at the rate of roughly one per hour. So the
Model Store poses an I/O challenge similar to that of regularly
checkpointing a traditional exascale application. However, we
observe that most models are not worth saving, and this can
be determined at run time by comparing the relative quality of
the models in the Model Cache and deciding which to actually
write to persistent storage and which to simply delete. Thus,
we just need to save the models in a cache long enough for
the workflow system to compare them to each other.

To support this mode of operation, we designed the Model
Cache, shown in Figure 5. This extends the CANDLE Super-
visor architecture with multiple components, including local
storage on each node and the DataSpaces servers. Using
DataSpaces storage allows for low-latency acces to model
data, since it is independent of the parallel I/O subsystem. In
a typical use case, the workflow stores model configurations
and associated in the Model Cache, where a separate process
can, depending on the application, compute summary statis-

tics, eliminate uninteresting configurations, and/or otherwise
compress configurations before outputting them.

Swift/T WorkflowSwift/T Workflow DataSpaces
Server
(RAM)

DataSpaces
Server
(RAM)

DataSpaces Clients

Parallel File System (big and persistent)Parallel File System (big and persistent)

Slow

CANDLE
Benchmark
CANDLE

Benchmark
Fast

NVRAM or RAM

Server

/tmp/tmp

Scheduler allocation

Good neural 
network model
Good neural 

network model

Swift/T ServerSwift/T Server

Swift/T Workers

CANDLE
Benchmark
CANDLE

Benchmark

TensorFlowTensorFlow

CANDLE
Benchmark
CANDLE

Benchmark

TensorFlowTensorFlow

/tmp/tmp /tmp/tmp

libsds.solibsds.so

Poor neural 
network model
Poor neural 

network model
Poor neural 

network model
Poor neural 

network model

Model 
Cache
Model 
Cache

TensorFlowTensorFlow

Fig. 5: CANDLE/Supervisor with Model Cache.

VI. COMPUTING SYSTEMS

We ran our benchmark workflows described previously
(§III) on LCRC Blues and NERSC Cori. These systems vary
greatly in their hardware and software systems, as indicated by
the following summary (which does not include differences in
compiler versions, software module management, and storage
system policies or capabilities):

• LCRC Blues at Argonne National Laboratory
– 306 nodes with
∗ 16-core Intel Xeon E5-2670 @ 2.6GHz
∗ 16 GB RAM

– Scheduler: PBS
• NERSC Cori at Lawrence Berkeley National Labora-

tory
– 2,388 nodes with
∗ Intel Xeon Haswell CPUs
∗ 128 GB RAM

– 9,688 nodes with
∗ Intel Xeon Phi
∗ 16 GB MCDRAM, 96 GB DDR

– Scheduler: SLURM
We use Swift/T to abstract the scheduler and compute layout

settings. The launch parameters for Swift/T allow the user to
specify the scheduler type, processor count, workers per node,
and other common settings in a uniform way across systems.

We use our Wrapper script abstraction (§V) to abstract the
Python configuration and DL library settings. The wrapper
script is invoked in one of two ways, either by a short piece
of Python code, the text of which is embedded in the Swift/T
script and executed directly by the Swift/T runtime embedded
Python interpreter, or by a bash script that is executed via
a Swift/T app function [40]. App functions are Swift/T
language functions that are implemented as command-line
programs, in this case a shell script that calls the Python
interpreter passing it the wrapper script as an argument. In each
case, the Swift/T script receives the hyperparameters from the
model exploration algorithm and passes them to the wrapper

6



script either via a string template in the embedded Python code
or as a command line argument to the bash script.

VII. PERFORMANCE RESULTS

In this section, we measure the performance of the Swift-
DataSpaces integration for synthetic workloads. In each case,
we measure the performance of a Swift/T workflow using
DataSpaces for data sharing (termed ‘Bench’), against a con-
trol case of using the parallel file system (PFS) for the same
workload (termed ‘Control’).

A. Small put/get rate

In the first test, we measure the performance of the two
systems on small key/value pairs (8 bytes). The two workflow
scripts are shown here:

1 foreach i in [0:N-1] {
2 sds_kv_put("key"+i, "value1") =>
3 sds_kv_get("key"+i, 100);
4 }

Bench 1
1 foreach i in [0:N-1] {
2 file f<"key"+i> = write("value");
3 string s = read(f);
4 }

Control 1

The Bench case uses our DataSpaces module (§IV-C) to
do N paired put()/get() operations. Each put()/get()
pair is ordered by the Swift/T ordering operator => but the N
loop iterations execute concurrently anywhere in the system,
ordered by the Swift/T load balancer.

The Control case uses the Swift/T builtin functions
write()/read() to write the string "value" into file
keyi. The write()/read() pair is ordered by the data
dependency on f.

We set N to 10 times the number of workers in the system.
Results are shown in Figure 6. We simply timed the whole

workflow and obtained a keys/second rate for each node count.
Note that two additional nodes are required for each run: a
Swift/T server and a DataSpaces server.

B. Large put/get rate

In this case, we measure the ability of the system to manage
larger values of size 1 MB. An input file of this size was
created in advance, then read by the workflow system and
distributed as the value string, and used in workflows like
Bench 1 / Control 1 above. Results are shown in Figure 7.

C. File transfer rate

In this case, a workflow more like the CANDLE use cases
is performed. A filename is generated N times (M=10). For
Bench 3, the file is stored in the local RAM-based /tmp,
but in the Control 3 it is written to the shared file system. A
make_data() task is then executed that writes 1 MB to that
file. For Bench 3, the file is then copied to DataSpaces, for
Control 3 it is simply left in the filesystem.

(a) Blues

(b) Cori
Fig. 6: Data access rate for simple put/get example with 1 KB
messages.

D. Application to CANDLE

Bench 3 and Control 3 mimic the case shown in §V-B, in
which files are produced in node-local storage, then copied
to DataSpaces. This is the performance critical I/O step.
Some small number of models may be reused and restarted
elsewhere, or written to persistent storage. Most will be simply
deleted. Results are shown in Figure 8.

E. Interpretation

Our performance data is currently somewhat noisy due to
the impact of other users in the system. We are continuing to
run these tests to improve our understanding of the potential
impact of this system.

VIII. RELATED WORK

A. Data Movement and I/O Systems

The capacity gap between computing components and data
movement and storage systems has been increasing expo-
nentially. In order to achieve a resilient service that moves
data while hiding errors and latencies, Thain et al. developed
a simple data movement system, Kangaroo, which makes
opportunistic use of disks and networks to keep applications
running [36]. Bent et al. designed the Batch-Aware Distributed
File System (BAD-FS) to orchestrate large, I/O-intensive batch
workloads on remote computing clusters distributed across the
wide area [5]. BAD-FS consists of two novel components:
a storage layer that exposes control of traditionally fixed
policies such as caching, consistency, and replication, and a
scheduler that exploits this control as necessary for different
workloads. By extracting control from the storage layer and

7



(a) Blues

(b) Cori
Fig. 7: Data access rate for simple put/get example with 1 MB
messages.

1 foreach j in [0:M-1] {
2 foreach r in [0:turbine_workers()-1] {
3 name = make_filename(j,r); // in /tmp
4 file f<name> = make_data(SIZE) =>
5 sds_kvf_put(name, name);
6 }
7 }

Bench 3
1 foreach j in [0:M-1] {
2 foreach r in [0:turbine_workers()-1] {
3 name = make_filename(j,r); // in /PFS
4 file f<name> = make_data(SIZE);
5 }
6 }

Control 3

placing it within an external scheduler, BAD-FS manages both
storage and computation in a coordinated way while gracefully
dealing with cache consistency, fault-tolerance, and space
management issues in a workload-specific manner. Zhang et al.
developed a scalable many-task computing data management
system that aggregates computing nodes’ local storage for
more efficient data movement strategies, and co-designed the
data management system with the data-aware scheduler to
enable dataflow pattern identification and automatic optimiza-
tion [43]. In [17], Dorier et al. presented a methodology for the
rapid development of custom data services, which are tailored
to the needs of specific applications on specific hardware, and
designed in close collaboration with users. This methodology
promotes the design of reusable building blocks that can
be composed together efficiently in runtime based on high-
performance threading, tasking, and remote procedure calls.

Fig. 8: File transfer rate (Blues).

B. Workflow Engines

There exist various workflow engines in different computing
environments. The Pegasus Workflow Management System,
first developed in 2001, maps abstract workflow descriptions
onto distributed computing infrastructures, and separates the
workflow description from the description of the execution
environment, i.e. keeping the workflow description resource-
independent. In its system design, the scalability is considered
to meet user demands of complex and large-scale workflows
(with millions of tasks). Pegasus workflows are based on the
directed acyclic graph (DAC) representation of scientific com-
putation composed of many tasks with dependencies among
them [15].

C. Data-intensive Workflows

Next-generation e-science is producing colossal amounts of
data, and these scientific applications typically feature data-
intensive workflows comprised of moldable parallel computing
jobs, such as MapReduce, with intricate inter-job dependen-
cies. The granularity of task partitioning in each moldable
job of such big data workflows has a significant impact on
workflow completion time, energy consumption, and financial
cost if executed in clouds. Shu et al. conducted an in-depth
investigation into the properties of moldable jobs and provided
an experiment-based validation of the performance model
where the total workload of a moldable job increases along
with the degree of parallelism [29]. In public cloud envi-
ronments, which provide a cost-effective computing platform
for big data workflows where moldable parallel computing
models were widely applied to meet stringent performance
requirements, Shu et al. constructed a big-data workflow
mapping model based on the moldable parallel computing
performance model, and formulated a workflow mapping
problem to minimize workflow makespan under a budget con-
straint [32]. To solve this strongly NP-complete problem, they
designed i) a fully polynomial-time approximation scheme for
a special case with a pipeline-structured workflow executed
on virtual machines of a single class, and ii) a heuristic
for a generalized problem with an arbitrary DAC-structured
workflow executed on virtual machines of multiple classes.
Considering that large-scale workflows for big data analytics
have become a main consumer of energy in data centers, Shu
et al. also delved into the problem of static workflow mapping
to minimize the dynamic energy consumption of a workflow

8



request under a deadline constraint in Hadoop clusters, which
is strongly NP-hard. In [30] and [33], a fully polynomial-time
approximation scheme was designed for a special case with a
pipeline-structured workflow on a homogeneous cluster and
a heuristic was designed for the generalized problem with
an arbitrary DAC-structured workflow on a heterogeneous
cluster. This problem was further extended to a dynamic
version with deadline-constrained MapReduce workflows to
minimize dynamic energy consumption in Hadoop clusters.
Shu et al. proposed a semi-dynamic online scheduling algo-
rithm based on adaptive task partitioning to reduce dynamic
energy consumption while meeting performance requirements
from a global perspective, and also developed corresponding
system modules for algorithm implementation in the Hadoop
ecosystem [31].

In [23], Luttgau et al. presented an approach to augment
the I/O efficiency of the individual tasks of workflows by
combining workflow description frameworks with system I/O
telemetry data, and introduced a conceptual architecture and a
prototype implementation for HPC data center deployments.

IX. FUTURE WORK

We have described an implementation of the basic fea-
tures of a scalable workflow framework for machine learning
applied to problems in cancer research. There remain many
additional features yet to investigate and develop.

Jaderberg et al. [21] introduced population-based training
(PBT) as a novel and performant hyperparameter optimization
approach. The core idea of PBT is that a “population” of
models are trained concurrently within a fixed computational
budget and, unlike iterative approaches such as those employed
with the mlrMBO library, there are no sequentially generated
new models to train. Each of the training models can initiate
an (asynchronous) update of its hyperparameters and model
parameters (i.e., weights) if it observes that its predictive
performance is significantly lagging behind the rest of the
running models. By allowing a model to update its weights
along with its hyperparameters, model training is “hot” restart,
decreasing the time needed for training. In order to implement
PBT, each running model’s weights, along with hyperparam-
eters and performance, need to be periodically and frequently
stored in locations accessible by each of the other running
models. Figure 9 shows the design we will utilize to store
and retrieve this data. The hyperparameters and performance
metrics can be stored in the Metadata Store (currently a Solr
database). However, the much larger model weights will be
stored using the Model Cache, with identifying keys stored in
the Metadata Store. Each running model will thus be able to
query the Metadata Store for performance metrics and retrieve
hyperparameters and model weights through the combined
data storage stack without significantly impacting system I/O.

X. CONCLUSION

Applying machine learning to cancer research is a promising
approach in many aspects, including the benchmark problems
used here, the RAS pathway, drug response, and treatment

CANDLE 
Benchmark

CANDLE 
Benchmark

Metadata Store

…

DataSpaces

model parameters

hyperparameters

Fig. 9: CANDLE/Supervisor hyperparameter and model storage
with the Metadata Store and DataSpaces.

strategies. In this paper, we described one aspect of the
data management problem for these workflows, efficiently
managing neural network weights. Efficiently collecting the
useful outputs from this process is an online data analysis and
reduction problem suitable for advanced storage and caching
techniques. We offered our solution by presenting the Model
Cache, which tightly integrates Swift/T and DataSpaces. Thus
it integrates with CANDLE/Supervisor, the framework for
rapidly testing hyperparameter optimization techniques for
machine learning models for CANDLE. The Model Cache
saves NN outputs temporarily, while the rest of the workflow
determines which models should be retained for the user
and which should be discarded. The preliminary performance
results show that our solution can outperform the existing
filesystems, and is capable of even better performance at larger
scales.

Cancer research is an important topic with significant so-
cietal impact. The Model Cache and associated infrastructure
will allow research teams to leverage the most powerful high-
performance computer systems in this problem space.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering, and early testbed platforms, in support of the
nation’s exascale computing imperative. We gratefully ac-
knowledge the computing resources provided on Blues, a high-
performance computing cluster operated by the Laboratory
Computing Resource Center at Argonne National Laboratory.

REFERENCES

[1] Cori Configuration. http://www.nersc.gov/users/computational-
systems/cori/configuration.

[2] Summit. https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit.

9



[3] Martín Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[4] Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T.
Foster. Compiler techniques for massively scalable implicit task paral-
lelism. In Proc. SC, 2014.

[5] John Bent, Douglas Thain, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Miron Livny. Explicit control a batch-aware distributed
file system. In Proc. of NSDI, page 27, San Francisco, CA, USA, Mar
2004.

[6] James Bergstra et al. Hyperopt: a Python library for model selection
and hyperparameter optimization. Computational Science & Discovery,
8(1):014008, 2015.

[7] James Bergstra, Daniel Yamins, and David D. Cox. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In Proc. of the 30th International Conference
on Machine Learning, 2013.

[8] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in Neural
Information Processing Systems, pages 2546–2554, 2011.

[9] Bernd Bischl et al. mlrMBO: A modular framework for model-
based optimization of expensive black-box functions. arXiv preprint
arXiv:1703.03373, 2017.

[10] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[11] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[12] Marc Claesen et al. Easy hyperparameter search using Optunity. CoRR,

abs/1412.1114, 2014.
[13] Chase Cockrell et al. High performance machine learning and evolu-

tionary computing to develop personalized therapeutics. In University
of Chicago MindBytes Posters, 2017.

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, 2011.

[15] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan,
Philip J. Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira
da Silva, Miron Livny, and Kent Wenger. Pegasus, a workflow man-
agement system for science automation. Future Generation Computer
Systems, 46:17–35, 2015.

[16] C. Docan, M. Parashar, and S. Klasky. DataSpaces: an interaction
and coordination framework for coupled simulation workflows. Cluster
Computing, 15, 2012.

[17] Matthieu Dorier, Philip Carns, Kevin Harms, Robert Latham, Robert
Ross, Shane Snyder, and Justin Wozniak. Methodology for the rapid
development of scalable hpc data services. In Proc. of Workshop in
conjunction with ACM/IEEE Supercomputing Conference, Dallas, TX,
USA, Nov 2018.

[18] Félix-Antoine Fortin et al. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research, 13:2171–2175, July 2012.

[19] Mike Houston. Production deep learning and scale. In Proc. Machine
Learning in HPC Environments, 2017.

[20] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Parallel algorithm
configuration. Learning and Intelligent Optimization, pages 55–70,
2012.

[21] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czar-
necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dun-
ning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu.
Population based training of neural networks. arXiv:1711.09846 [cs],
November 2017. arXiv: 1711.09846.

[22] Yangqing Jia et al. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[23] Jakob Luttgau, Shane Snyder, Philip Carns, Justin M. Wozniak, Julian
Kunkel, and Thomas Ludwig. Toward understanding i/o behavior in
hpc workflows. In Proc. of Workshop in conjunction with ACM/IEEE
Supercomputing Conference, Dallas, TX, USA, Nov 2018.

[24] Michael A Nielsen. Neural networks and deep learning. Determination
Press, 2015. http://neuralnetworksanddeeplearning.com.

[25] Jonathan Ozik, Nicholson Collier, Justin M. Wozniak, and Carmine
Spagnuolo. From desktop to large-scale model exploration with Swift/T.
In Proc. Winter Simulation Conference, 2016.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[27] Greg Kochanski Puneith Kaul, Daniel Golovin. Hyperparameter tun-
ing in cloud machine learning engine using Bayesian optimization,

2017. https://cloud.google.com/blog/big-data/2017/08/hyperparameter-
tuning-in-cloud-machine-learning-engine-using-bayesian-optimization.

[28] Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 2135–2135, New York, NY, USA, 2016. ACM.

[29] Tong Shu. Performance Optimization and Energy Efficiency
of Big-data Computing Workflows. Dissertation, New Jersey
Institute of Technology, Newark, NJ, USA, Aug 2017.
http://archives.njit.edu/vol01/etd/2010s/2017/njit-etd2017-096/njit-
etd2017-096.pdf.

[30] Tong Shu and Chase Q. Wu. Energy-efficient mapping of big data
workflows under deadline constraints. In Proc. of Workshop on Work-
flows in Support of Large-Scale Science in conjunction with ACM/IEEE
Supercomputing Conference, pages 34–43, Salt Lake City, UT, USA,
Nov 2016. http://ceur-ws.org/Vol-1800/paper5.pdf.

[31] Tong Shu and Chase Q. Wu. Energy-efficient dynamic scheduling of
deadline-constrained MapReduce workflows. In Proc. of IEEE eScience,
pages 393–402, Auckland, New Zealand, Oct 2017.

[32] Tong Shu and Chase Q. Wu. Performance optimization of Hadoop
workflows in public clouds through adaptive task partitioning. In Proc.
of IEEE INFOCOM, pages 2349–2357, Atlanta, GA, USA, May 2017.

[33] Tong Shu and Chase Q. Wu. Energy-efficient mapping
of large-scale workflows under deadline constraints in
big data computing systems. Elsevier FGCS, in press.
https://www.sciencedirect.com/science/article/pii/S0167739X17300468.

[34] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[35] Nervana Systems. Neon. https://github.com/NervanaSystems/neon,
2017. Accessed: 2017-09-14.

[36] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The
kangaroo approach to data movement on the grid. In Proc. of HPDC,
pages 325–333, San Francisco, CA, USA, Aug 2001.

[37] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[38] Brian Van Essen et al. LBANN: Livermore Big Artificial Neural
Network HPC Toolkit. In Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments, MLHPC ’15,
pages 5:1–5:6, New York, NY, USA, 2015. ACM.

[39] Justin M. Wozniak, Timothy G. Armstrong, Ketan Maheshwari, Ew-
ing L. Lusk, Daniel S. Katz, Michael Wilde, and Ian T. Foster. Turbine:
A distributed-memory dataflow engine for high performance many-task
applications. Fundamenta Informaticae, 28, 2013.

[40] Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel S.
Katz, Ewing Lusk, and Ian T. Foster. Swift/T: Scalable data flow
programming for distributed-memory task-parallel applications. In Proc.
CCGrid, 2013.

[41] Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik,
Nicholson Collier, John Bauer, Fangfang Xia, Thomas Brettin, Rick
Stevens, Jamaludin Mohd-Yusof, Cristina Garcia Cardona, Brian Van
Essen, and Matthew Baughman. CANDLE/Supervisor: A workflow
framework for machine learning applied to cancer research. In Proc.
Computational Approaches for Cancer @ SC, 2017.

[42] Hao Zhang et al. Poseidon: An efficient communication architecture
for distributed deep learning on GPU clusters. CoRR, abs/1706.03292,
2017.

[43] Zhao Zhang, Daniel S. Katz, Justin M. Wozniak, Allan Espinosa, and
Ian Foster. Design and analysis of data management in scalable parallel
scripting. In Proc. of ACM/IEEE Supercomputing Conference, Salt Lake
City, UT, USA, Nov 2012.

10

https://github.com/fchollet/keras
http://neuralnetworksanddeeplearning. com
https://github.com/NervanaSystems/neon

