Actual source code: plexfem.c

petsc-3.9.2 2018-05-20
Report Typos and Errors
  1:  #include <petsc/private/dmpleximpl.h>
  2:  #include <petscsf.h>

  4:  #include <petsc/private/petscfeimpl.h>
  5:  #include <petsc/private/petscfvimpl.h>

  7: /*@
  8:   DMPlexGetScale - Get the scale for the specified fundamental unit

 10:   Not collective

 12:   Input Arguments:
 13: + dm   - the DM
 14: - unit - The SI unit

 16:   Output Argument:
 17: . scale - The value used to scale all quantities with this unit

 19:   Level: advanced

 21: .seealso: DMPlexSetScale(), PetscUnit
 22: @*/
 23: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
 24: {
 25:   DM_Plex *mesh = (DM_Plex*) dm->data;

 30:   *scale = mesh->scale[unit];
 31:   return(0);
 32: }

 34: /*@
 35:   DMPlexSetScale - Set the scale for the specified fundamental unit

 37:   Not collective

 39:   Input Arguments:
 40: + dm   - the DM
 41: . unit - The SI unit
 42: - scale - The value used to scale all quantities with this unit

 44:   Level: advanced

 46: .seealso: DMPlexGetScale(), PetscUnit
 47: @*/
 48: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
 49: {
 50:   DM_Plex *mesh = (DM_Plex*) dm->data;

 54:   mesh->scale[unit] = scale;
 55:   return(0);
 56: }

 58: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nf, PetscScalar *mode, void *ctx)
 59: {
 60:   const PetscInt eps[3][3][3] = {{{0, 0, 0}, {0, 0, 1}, {0, -1, 0}}, {{0, 0, -1}, {0, 0, 0}, {1, 0, 0}}, {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}}};
 61:   PetscInt *ctxInt  = (PetscInt *) ctx;
 62:   PetscInt  dim2    = ctxInt[0];
 63:   PetscInt  d       = ctxInt[1];
 64:   PetscInt  i, j, k = dim > 2 ? d - dim : d;

 67:   if (dim != dim2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %d does not match context dimension %d", dim, dim2);
 68:   for (i = 0; i < dim; i++) mode[i] = 0.;
 69:   if (d < dim) {
 70:     mode[d] = 1.; /* Translation along axis d */
 71:   } else {
 72:     for (i = 0; i < dim; i++) {
 73:       for (j = 0; j < dim; j++) {
 74:         mode[j] += eps[i][j][k]*X[i]; /* Rotation about axis d */
 75:       }
 76:     }
 77:   }
 78:   return(0);
 79: }

 81: /*@C
 82:   DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation

 84:   Collective on DM

 86:   Input Arguments:
 87: . dm - the DM

 89:   Output Argument:
 90: . sp - the null space

 92:   Note: This is necessary to provide a suitable coarse space for algebraic multigrid

 94:   Level: advanced

 96: .seealso: MatNullSpaceCreate(), PCGAMG
 97: @*/
 98: PetscErrorCode DMPlexCreateRigidBody(DM dm, MatNullSpace *sp)
 99: {
100:   MPI_Comm       comm;
101:   Vec            mode[6];
102:   PetscSection   section, globalSection;
103:   PetscInt       dim, dimEmbed, n, m, d, i, j;

107:   PetscObjectGetComm((PetscObject)dm,&comm);
108:   DMGetDimension(dm, &dim);
109:   DMGetCoordinateDim(dm, &dimEmbed);
110:   if (dim == 1) {
111:     MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp);
112:     return(0);
113:   }
114:   DMGetDefaultSection(dm, &section);
115:   DMGetDefaultGlobalSection(dm, &globalSection);
116:   PetscSectionGetConstrainedStorageSize(globalSection, &n);
117:   m    = (dim*(dim+1))/2;
118:   VecCreate(comm, &mode[0]);
119:   VecSetSizes(mode[0], n, PETSC_DETERMINE);
120:   VecSetUp(mode[0]);
121:   for (i = 1; i < m; ++i) {VecDuplicate(mode[0], &mode[i]);}
122:   for (d = 0; d < m; d++) {
123:     PetscInt         ctx[2];
124:     PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
125:     void            *voidctx = (void *) (&ctx[0]);

127:     ctx[0] = dimEmbed;
128:     ctx[1] = d;
129:     DMProjectFunction(dm, 0.0, &func, &voidctx, INSERT_VALUES, mode[d]);
130:   }
131:   for (i = 0; i < dim; ++i) {VecNormalize(mode[i], NULL);}
132:   /* Orthonormalize system */
133:   for (i = dim; i < m; ++i) {
134:     PetscScalar dots[6];

136:     VecMDot(mode[i], i, mode, dots);
137:     for (j = 0; j < i; ++j) dots[j] *= -1.0;
138:     VecMAXPY(mode[i], i, dots, mode);
139:     VecNormalize(mode[i], NULL);
140:   }
141:   MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp);
142:   for (i = 0; i< m; ++i) {VecDestroy(&mode[i]);}
143:   return(0);
144: }

146: /*@C
147:   DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation

149:   Collective on DM

151:   Input Arguments:
152: + dm    - the DM
153: . nb    - The number of bodies
154: . label - The DMLabel marking each domain
155: . nids  - The number of ids per body
156: - ids   - An array of the label ids in sequence for each domain

158:   Output Argument:
159: . sp - the null space

161:   Note: This is necessary to provide a suitable coarse space for algebraic multigrid

163:   Level: advanced

165: .seealso: MatNullSpaceCreate()
166: @*/
167: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
168: {
169:   MPI_Comm       comm;
170:   PetscSection   section, globalSection;
171:   Vec           *mode;
172:   PetscScalar   *dots;
173:   PetscInt       dim, dimEmbed, n, m, b, d, i, j, off;

177:   PetscObjectGetComm((PetscObject)dm,&comm);
178:   DMGetDimension(dm, &dim);
179:   DMGetCoordinateDim(dm, &dimEmbed);
180:   DMGetDefaultSection(dm, &section);
181:   DMGetDefaultGlobalSection(dm, &globalSection);
182:   PetscSectionGetConstrainedStorageSize(globalSection, &n);
183:   m    = nb * (dim*(dim+1))/2;
184:   PetscMalloc2(m, &mode, m, &dots);
185:   VecCreate(comm, &mode[0]);
186:   VecSetSizes(mode[0], n, PETSC_DETERMINE);
187:   VecSetUp(mode[0]);
188:   for (i = 1; i < m; ++i) {VecDuplicate(mode[0], &mode[i]);}
189:   for (b = 0, off = 0; b < nb; ++b) {
190:     for (d = 0; d < m/nb; ++d) {
191:       PetscInt         ctx[2];
192:       PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
193:       void            *voidctx = (void *) (&ctx[0]);

195:       ctx[0] = dimEmbed;
196:       ctx[1] = d;
197:       DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]);
198:       off   += nids[b];
199:     }
200:   }
201:   for (i = 0; i < dim; ++i) {VecNormalize(mode[i], NULL);}
202:   /* Orthonormalize system */
203:   for (i = 0; i < m; ++i) {
204:     VecMDot(mode[i], i, mode, dots);
205:     for (j = 0; j < i; ++j) dots[j] *= -1.0;
206:     VecMAXPY(mode[i], i, dots, mode);
207:     VecNormalize(mode[i], NULL);
208:   }
209:   MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp);
210:   for (i = 0; i< m; ++i) {VecDestroy(&mode[i]);}
211:   PetscFree2(mode, dots);
212:   return(0);
213: }

215: /*@
216:   DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
217:   are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
218:   evaluating the dual space basis of that point.  A basis function is associated with the point in its
219:   transitively-closed support whose mesh height is highest (w.r.t. DAG height), but not greater than the maximum
220:   projection height, which is set with this function.  By default, the maximum projection height is zero, which means
221:   that only mesh cells are used to project basis functions.  A height of one, for example, evaluates a cell-interior
222:   basis functions using its cells dual space basis, but all other basis functions with the dual space basis of a face.

224:   Input Parameters:
225: + dm - the DMPlex object
226: - height - the maximum projection height >= 0

228:   Level: advanced

230: .seealso: DMPlexGetMaxProjectionHeight(), DMProjectFunctionLocal(), DMProjectFunctionLabelLocal()
231: @*/
232: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
233: {
234:   DM_Plex *plex = (DM_Plex *) dm->data;

238:   plex->maxProjectionHeight = height;
239:   return(0);
240: }

242: /*@
243:   DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
244:   DMPlexProjectXXXLocal() functions.

246:   Input Parameters:
247: . dm - the DMPlex object

249:   Output Parameters:
250: . height - the maximum projection height

252:   Level: intermediate

254: .seealso: DMPlexSetMaxProjectionHeight(), DMProjectFunctionLocal(), DMProjectFunctionLabelLocal()
255: @*/
256: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
257: {
258:   DM_Plex *plex = (DM_Plex *) dm->data;

262:   *height = plex->maxProjectionHeight;
263:   return(0);
264: }

266: /*@C
267:   DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector

269:   Input Parameters:
270: + dm     - The DM, with a PetscDS that matches the problem being constrained
271: . time   - The time
272: . field  - The field to constrain
273: . Nc     - The number of constrained field components, or 0 for all components
274: . comps  - An array of constrained component numbers, or NULL for all components
275: . label  - The DMLabel defining constrained points
276: . numids - The number of DMLabel ids for constrained points
277: . ids    - An array of ids for constrained points
278: . func   - A pointwise function giving boundary values
279: - ctx    - An optional user context for bcFunc

281:   Output Parameter:
282: . locX   - A local vector to receives the boundary values

284:   Level: developer

286: .seealso: DMPlexInsertBoundaryValuesEssentialField(), DMAddBoundary()
287: @*/
288: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
289: {
290:   PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
291:   void            **ctxs;
292:   PetscInt          numFields;
293:   PetscErrorCode    ierr;

296:   DMGetNumFields(dm, &numFields);
297:   PetscCalloc2(numFields,&funcs,numFields,&ctxs);
298:   funcs[field] = func;
299:   ctxs[field]  = ctx;
300:   DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX);
301:   PetscFree2(funcs,ctxs);
302:   return(0);
303: }

305: /*@C
306:   DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector

308:   Input Parameters:
309: + dm     - The DM, with a PetscDS that matches the problem being constrained
310: . time   - The time
311: . locU   - A local vector with the input solution values
312: . field  - The field to constrain
313: . Nc     - The number of constrained field components, or 0 for all components
314: . comps  - An array of constrained component numbers, or NULL for all components
315: . label  - The DMLabel defining constrained points
316: . numids - The number of DMLabel ids for constrained points
317: . ids    - An array of ids for constrained points
318: . func   - A pointwise function giving boundary values
319: - ctx    - An optional user context for bcFunc

321:   Output Parameter:
322: . locX   - A local vector to receives the boundary values

324:   Level: developer

326: .seealso: DMPlexInsertBoundaryValuesEssential(), DMAddBoundary()
327: @*/
328: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[],
329:                                                         void (*func)(PetscInt, PetscInt, PetscInt,
330:                                                                      const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
331:                                                                      const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
332:                                                                      PetscReal, const PetscReal[], PetscInt, const PetscScalar[],
333:                                                                      PetscScalar[]),
334:                                                         void *ctx, Vec locX)
335: {
336:   void (**funcs)(PetscInt, PetscInt, PetscInt,
337:                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
338:                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
339:                  PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
340:   void            **ctxs;
341:   PetscInt          numFields;
342:   PetscErrorCode    ierr;

345:   DMGetNumFields(dm, &numFields);
346:   PetscCalloc2(numFields,&funcs,numFields,&ctxs);
347:   funcs[field] = func;
348:   ctxs[field]  = ctx;
349:   DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX);
350:   PetscFree2(funcs,ctxs);
351:   return(0);
352: }

354: /*@C
355:   DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector

357:   Input Parameters:
358: + dm     - The DM, with a PetscDS that matches the problem being constrained
359: . time   - The time
360: . faceGeometry - A vector with the FVM face geometry information
361: . cellGeometry - A vector with the FVM cell geometry information
362: . Grad         - A vector with the FVM cell gradient information
363: . field  - The field to constrain
364: . Nc     - The number of constrained field components, or 0 for all components
365: . comps  - An array of constrained component numbers, or NULL for all components
366: . label  - The DMLabel defining constrained points
367: . numids - The number of DMLabel ids for constrained points
368: . ids    - An array of ids for constrained points
369: . func   - A pointwise function giving boundary values
370: - ctx    - An optional user context for bcFunc

372:   Output Parameter:
373: . locX   - A local vector to receives the boundary values

375:   Note: This implementation currently ignores the numcomps/comps argument from DMAddBoundary()

377:   Level: developer

379: .seealso: DMPlexInsertBoundaryValuesEssential(), DMPlexInsertBoundaryValuesEssentialField(), DMAddBoundary()
380: @*/
381: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[],
382:                                                  PetscErrorCode (*func)(PetscReal,const PetscReal*,const PetscReal*,const PetscScalar*,PetscScalar*,void*), void *ctx, Vec locX)
383: {
384:   PetscDS            prob;
385:   PetscSF            sf;
386:   DM                 dmFace, dmCell, dmGrad;
387:   const PetscScalar *facegeom, *cellgeom = NULL, *grad;
388:   const PetscInt    *leaves;
389:   PetscScalar       *x, *fx;
390:   PetscInt           dim, nleaves, loc, fStart, fEnd, pdim, i;
391:   PetscErrorCode     ierr, ierru = 0;

394:   DMGetPointSF(dm, &sf);
395:   PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL);
396:   nleaves = PetscMax(0, nleaves);
397:   DMGetDimension(dm, &dim);
398:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
399:   DMGetDS(dm, &prob);
400:   VecGetDM(faceGeometry, &dmFace);
401:   VecGetArrayRead(faceGeometry, &facegeom);
402:   if (cellGeometry) {
403:     VecGetDM(cellGeometry, &dmCell);
404:     VecGetArrayRead(cellGeometry, &cellgeom);
405:   }
406:   if (Grad) {
407:     PetscFV fv;

409:     PetscDSGetDiscretization(prob, field, (PetscObject *) &fv);
410:     VecGetDM(Grad, &dmGrad);
411:     VecGetArrayRead(Grad, &grad);
412:     PetscFVGetNumComponents(fv, &pdim);
413:     DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx);
414:   }
415:   VecGetArray(locX, &x);
416:   for (i = 0; i < numids; ++i) {
417:     IS              faceIS;
418:     const PetscInt *faces;
419:     PetscInt        numFaces, f;

421:     DMLabelGetStratumIS(label, ids[i], &faceIS);
422:     if (!faceIS) continue; /* No points with that id on this process */
423:     ISGetLocalSize(faceIS, &numFaces);
424:     ISGetIndices(faceIS, &faces);
425:     for (f = 0; f < numFaces; ++f) {
426:       const PetscInt         face = faces[f], *cells;
427:       PetscFVFaceGeom        *fg;

429:       if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
430:       PetscFindInt(face, nleaves, (PetscInt *) leaves, &loc);
431:       if (loc >= 0) continue;
432:       DMPlexPointLocalRead(dmFace, face, facegeom, &fg);
433:       DMPlexGetSupport(dm, face, &cells);
434:       if (Grad) {
435:         PetscFVCellGeom       *cg;
436:         PetscScalar           *cx, *cgrad;
437:         PetscScalar           *xG;
438:         PetscReal              dx[3];
439:         PetscInt               d;

441:         DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg);
442:         DMPlexPointLocalRead(dm, cells[0], x, &cx);
443:         DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad);
444:         DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG);
445:         DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
446:         for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d*dim], dx);
447:         ierru = (*func)(time, fg->centroid, fg->normal, fx, xG, ctx);
448:         if (ierru) {
449:           ISRestoreIndices(faceIS, &faces);
450:           ISDestroy(&faceIS);
451:           goto cleanup;
452:         }
453:       } else {
454:         PetscScalar       *xI;
455:         PetscScalar       *xG;

457:         DMPlexPointLocalRead(dm, cells[0], x, &xI);
458:         DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG);
459:         ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
460:         if (ierru) {
461:           ISRestoreIndices(faceIS, &faces);
462:           ISDestroy(&faceIS);
463:           goto cleanup;
464:         }
465:       }
466:     }
467:     ISRestoreIndices(faceIS, &faces);
468:     ISDestroy(&faceIS);
469:   }
470:   cleanup:
471:   VecRestoreArray(locX, &x);
472:   if (Grad) {
473:     DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx);
474:     VecRestoreArrayRead(Grad, &grad);
475:   }
476:   if (cellGeometry) {VecRestoreArrayRead(cellGeometry, &cellgeom);}
477:   VecRestoreArrayRead(faceGeometry, &facegeom);
478:   CHKERRQ(ierru);
479:   return(0);
480: }

482: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
483: {
484:   PetscInt       numBd, b;

488:   PetscDSGetNumBoundary(dm->prob, &numBd);
489:   for (b = 0; b < numBd; ++b) {
490:     DMBoundaryConditionType type;
491:     const char             *labelname;
492:     DMLabel                 label;
493:     PetscInt                field, Nc;
494:     const PetscInt         *comps;
495:     PetscObject             obj;
496:     PetscClassId            id;
497:     void                    (*func)(void);
498:     PetscInt                numids;
499:     const PetscInt         *ids;
500:     void                   *ctx;

502:     DMGetBoundary(dm, b, &type, NULL, &labelname, &field, &Nc, &comps, &func, &numids, &ids, &ctx);
503:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
504:     DMGetLabel(dm, labelname, &label);
505:     DMGetField(dm, field, &obj);
506:     PetscObjectGetClassId(obj, &id);
507:     if (id == PETSCFE_CLASSID) {
508:       switch (type) {
509:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
510:       case DM_BC_ESSENTIAL:
511:         DMPlexLabelAddCells(dm,label);
512:         DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, (PetscErrorCode (*)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *)) func, ctx, locX);
513:         DMPlexLabelClearCells(dm,label);
514:         break;
515:       case DM_BC_ESSENTIAL_FIELD:
516:         DMPlexLabelAddCells(dm,label);
517:         DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids,
518:                                                         (void (*)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
519:                                                                   const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
520:                                                                   PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[])) func, ctx, locX);
521:         DMPlexLabelClearCells(dm,label);
522:         break;
523:       default: break;
524:       }
525:     } else if (id == PETSCFV_CLASSID) {
526:       if (!faceGeomFVM) continue;
527:       DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids,
528:                                                (PetscErrorCode (*)(PetscReal,const PetscReal*,const PetscReal*,const PetscScalar*,PetscScalar*,void*)) func, ctx, locX);
529:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
530:   }
531:   return(0);
532: }

534: /*@
535:   DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector

537:   Input Parameters:
538: + dm - The DM
539: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
540: . time - The time
541: . faceGeomFVM - Face geometry data for FV discretizations
542: . cellGeomFVM - Cell geometry data for FV discretizations
543: - gradFVM - Gradient reconstruction data for FV discretizations

545:   Output Parameters:
546: . locX - Solution updated with boundary values

548:   Level: developer

550: .seealso: DMProjectFunctionLabelLocal()
551: @*/
552: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
553: {

562:   PetscTryMethod(dm,"DMPlexInsertBoundaryValues_C",(DM,PetscBool,Vec,PetscReal,Vec,Vec,Vec),(dm,insertEssential,locX,time,faceGeomFVM,cellGeomFVM,gradFVM));
563:   return(0);
564: }

566: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
567: {
568:   Vec              localX;
569:   PetscErrorCode   ierr;

572:   DMGetLocalVector(dm, &localX);
573:   DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL);
574:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
575:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
576:   DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff);
577:   DMRestoreLocalVector(dm, &localX);
578:   return(0);
579: }

581: /*@C
582:   DMComputeL2Diff - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.

584:   Input Parameters:
585: + dm     - The DM
586: . time   - The time
587: . funcs  - The functions to evaluate for each field component
588: . ctxs   - Optional array of contexts to pass to each function, or NULL.
589: - localX - The coefficient vector u_h, a local vector

591:   Output Parameter:
592: . diff - The diff ||u - u_h||_2

594:   Level: developer

596: .seealso: DMProjectFunction(), DMComputeL2FieldDiff(), DMComputeL2GradientDiff()
597: @*/
598: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
599: {
600:   const PetscInt   debug = 0;
601:   PetscSection     section;
602:   PetscQuadrature  quad;
603:   PetscScalar     *funcVal, *interpolant;
604:   PetscReal       *coords, *detJ, *J;
605:   PetscReal        localDiff = 0.0;
606:   const PetscReal *quadWeights;
607:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, cEndInterior, c, field, fieldOffset;
608:   PetscErrorCode   ierr;

611:   DMGetDimension(dm, &dim);
612:   DMGetCoordinateDim(dm, &coordDim);
613:   DMGetDefaultSection(dm, &section);
614:   PetscSectionGetNumFields(section, &numFields);
615:   for (field = 0; field < numFields; ++field) {
616:     PetscObject  obj;
617:     PetscClassId id;
618:     PetscInt     Nc;

620:     DMGetField(dm, field, &obj);
621:     PetscObjectGetClassId(obj, &id);
622:     if (id == PETSCFE_CLASSID) {
623:       PetscFE fe = (PetscFE) obj;

625:       PetscFEGetQuadrature(fe, &quad);
626:       PetscFEGetNumComponents(fe, &Nc);
627:     } else if (id == PETSCFV_CLASSID) {
628:       PetscFV fv = (PetscFV) obj;

630:       PetscFVGetQuadrature(fv, &quad);
631:       PetscFVGetNumComponents(fv, &Nc);
632:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
633:     numComponents += Nc;
634:   }
635:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights);
636:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
637:   PetscMalloc5(numComponents,&funcVal,numComponents,&interpolant,coordDim*Nq,&coords,Nq,&detJ,coordDim*coordDim*Nq,&J);
638:   DMPlexGetVTKCellHeight(dm, &cellHeight);
639:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
640:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
641:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
642:   for (c = cStart; c < cEnd; ++c) {
643:     PetscScalar *x = NULL;
644:     PetscReal    elemDiff = 0.0;
645:     PetscInt     qc = 0;

647:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, J, NULL, detJ);
648:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

650:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
651:       PetscObject  obj;
652:       PetscClassId id;
653:       void * const ctx = ctxs ? ctxs[field] : NULL;
654:       PetscInt     Nb, Nc, q, fc;

656:       DMGetField(dm, field, &obj);
657:       PetscObjectGetClassId(obj, &id);
658:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
659:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
660:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
661:       if (debug) {
662:         char title[1024];
663:         PetscSNPrintf(title, 1023, "Solution for Field %d", field);
664:         DMPrintCellVector(c, title, Nb, &x[fieldOffset]);
665:       }
666:       for (q = 0; q < Nq; ++q) {
667:         if (detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, point %D", detJ[q], c, q);
668:         (*funcs[field])(coordDim, time, &coords[coordDim * q], Nc, funcVal, ctx);
669:         if (ierr) {
670:           PetscErrorCode ierr2;
671:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
672:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
673:           ierr2 = PetscFree5(funcVal,interpolant,coords,detJ,J);CHKERRQ(ierr2);
674: 
675:         }
676:         if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], q, interpolant);}
677:         else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
678:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
679:         for (fc = 0; fc < Nc; ++fc) {
680:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
681:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %d field %d diff %g\n", c, field, PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q]);}
682:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q];
683:         }
684:       }
685:       fieldOffset += Nb;
686:       qc += Nc;
687:     }
688:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
689:     if (debug) {PetscPrintf(PETSC_COMM_SELF, "  elem %d diff %g\n", c, elemDiff);}
690:     localDiff += elemDiff;
691:   }
692:   PetscFree5(funcVal,interpolant,coords,detJ,J);
693:   MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
694:   *diff = PetscSqrtReal(*diff);
695:   return(0);
696: }

698: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
699: {
700:   const PetscInt   debug = 0;
701:   PetscSection     section;
702:   PetscQuadrature  quad;
703:   Vec              localX;
704:   PetscScalar     *funcVal, *interpolant;
705:   const PetscReal *quadPoints, *quadWeights;
706:   PetscReal       *coords, *realSpaceDer, *J, *invJ, *detJ;
707:   PetscReal        localDiff = 0.0;
708:   PetscInt         dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, cEndInterior, c, field, fieldOffset;
709:   PetscErrorCode   ierr;

712:   DMGetDimension(dm, &dim);
713:   DMGetCoordinateDim(dm, &coordDim);
714:   DMGetDefaultSection(dm, &section);
715:   PetscSectionGetNumFields(section, &numFields);
716:   DMGetLocalVector(dm, &localX);
717:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
718:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
719:   for (field = 0; field < numFields; ++field) {
720:     PetscFE  fe;
721:     PetscInt Nc;

723:     DMGetField(dm, field, (PetscObject *) &fe);
724:     PetscFEGetQuadrature(fe, &quad);
725:     PetscFEGetNumComponents(fe, &Nc);
726:     numComponents += Nc;
727:   }
728:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
729:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
730:   /* DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX); */
731:   PetscMalloc7(numComponents,&funcVal,coordDim*Nq,&coords,coordDim*Nq,&realSpaceDer,coordDim*coordDim*Nq,&J,coordDim*coordDim*Nq,&invJ,numComponents,&interpolant,Nq,&detJ);
732:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
733:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
734:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
735:   for (c = cStart; c < cEnd; ++c) {
736:     PetscScalar *x = NULL;
737:     PetscReal    elemDiff = 0.0;
738:     PetscInt     qc = 0;

740:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, J, invJ, detJ);
741:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

743:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
744:       PetscFE          fe;
745:       void * const     ctx = ctxs ? ctxs[field] : NULL;
746:       PetscReal       *basisDer;
747:       PetscInt         Nb, Nc, q, fc;

749:       DMGetField(dm, field, (PetscObject *) &fe);
750:       PetscFEGetDimension(fe, &Nb);
751:       PetscFEGetNumComponents(fe, &Nc);
752:       PetscFEGetDefaultTabulation(fe, NULL, &basisDer, NULL);
753:       if (debug) {
754:         char title[1024];
755:         PetscSNPrintf(title, 1023, "Solution for Field %d", field);
756:         DMPrintCellVector(c, title, Nb, &x[fieldOffset]);
757:       }
758:       for (q = 0; q < Nq; ++q) {
759:         if (detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", detJ[q], c, q);
760:         (*funcs[field])(coordDim, time, &coords[q*coordDim], n, numFields, funcVal, ctx);
761:         if (ierr) {
762:           PetscErrorCode ierr2;
763:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
764:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
765:           ierr2 = PetscFree7(funcVal,coords,realSpaceDer,J,invJ,interpolant,detJ);CHKERRQ(ierr2);
766: 
767:         }
768:         PetscFEInterpolateGradient_Static(fe, &x[fieldOffset], coordDim, invJ, n, q, interpolant);
769:         for (fc = 0; fc < Nc; ++fc) {
770:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
771:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %d fieldDer %d diff %g\n", c, field, PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q]);}
772:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q];
773:         }
774:       }
775:       fieldOffset += Nb;
776:       qc          += Nc;
777:     }
778:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
779:     if (debug) {PetscPrintf(PETSC_COMM_SELF, "  elem %d diff %g\n", c, elemDiff);}
780:     localDiff += elemDiff;
781:   }
782:   PetscFree7(funcVal,coords,realSpaceDer,J,invJ,interpolant,detJ);
783:   DMRestoreLocalVector(dm, &localX);
784:   MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
785:   *diff = PetscSqrtReal(*diff);
786:   return(0);
787: }

789: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
790: {
791:   const PetscInt   debug = 0;
792:   PetscSection     section;
793:   PetscQuadrature  quad;
794:   Vec              localX;
795:   PetscScalar     *funcVal, *interpolant;
796:   PetscReal       *coords, *detJ, *J;
797:   PetscReal       *localDiff;
798:   const PetscReal *quadPoints, *quadWeights;
799:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, c, field, fieldOffset;
800:   PetscErrorCode   ierr;

803:   DMGetDimension(dm, &dim);
804:   DMGetCoordinateDim(dm, &coordDim);
805:   DMGetDefaultSection(dm, &section);
806:   PetscSectionGetNumFields(section, &numFields);
807:   DMGetLocalVector(dm, &localX);
808:   DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX);
809:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
810:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
811:   for (field = 0; field < numFields; ++field) {
812:     PetscObject  obj;
813:     PetscClassId id;
814:     PetscInt     Nc;

816:     DMGetField(dm, field, &obj);
817:     PetscObjectGetClassId(obj, &id);
818:     if (id == PETSCFE_CLASSID) {
819:       PetscFE fe = (PetscFE) obj;

821:       PetscFEGetQuadrature(fe, &quad);
822:       PetscFEGetNumComponents(fe, &Nc);
823:     } else if (id == PETSCFV_CLASSID) {
824:       PetscFV fv = (PetscFV) obj;

826:       PetscFVGetQuadrature(fv, &quad);
827:       PetscFVGetNumComponents(fv, &Nc);
828:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
829:     numComponents += Nc;
830:   }
831:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
832:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
833:   PetscCalloc6(numFields,&localDiff,numComponents,&funcVal,numComponents,&interpolant,coordDim*Nq,&coords,Nq,&detJ,coordDim*coordDim*Nq,&J);
834:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
835:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
836:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
837:   for (c = cStart; c < cEnd; ++c) {
838:     PetscScalar *x = NULL;
839:     PetscInt     qc = 0;

841:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, J, NULL, detJ);
842:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

844:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
845:       PetscObject  obj;
846:       PetscClassId id;
847:       void * const ctx = ctxs ? ctxs[field] : NULL;
848:       PetscInt     Nb, Nc, q, fc;

850:       PetscReal       elemDiff = 0.0;

852:       DMGetField(dm, field, &obj);
853:       PetscObjectGetClassId(obj, &id);
854:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
855:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
856:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
857:       if (debug) {
858:         char title[1024];
859:         PetscSNPrintf(title, 1023, "Solution for Field %d", field);
860:         DMPrintCellVector(c, title, Nb*Nc, &x[fieldOffset]);
861:       }
862:       for (q = 0; q < Nq; ++q) {
863:         if (detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature point %D", detJ, c, q);
864:         (*funcs[field])(coordDim, time, &coords[coordDim*q], numFields, funcVal, ctx);
865:         if (ierr) {
866:           PetscErrorCode ierr2;
867:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
868:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
869:           ierr2 = PetscFree6(localDiff,funcVal,interpolant,coords,detJ,J);CHKERRQ(ierr2);
870: 
871:         }
872:         if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], q, interpolant);}
873:         else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
874:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
875:         for (fc = 0; fc < Nc; ++fc) {
876:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
877:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %d field %d point %g %g %g diff %g\n", c, field, coordDim > 0 ? coords[0] : 0., coordDim > 1 ? coords[1] : 0., coordDim > 2 ? coords[2] : 0., PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q]);}
878:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q];
879:         }
880:       }
881:       fieldOffset += Nb;
882:       qc          += Nc;
883:       localDiff[field] += elemDiff;
884:     }
885:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
886:   }
887:   DMRestoreLocalVector(dm, &localX);
888:   MPIU_Allreduce(localDiff, diff, numFields, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
889:   for (field = 0; field < numFields; ++field) diff[field] = PetscSqrtReal(diff[field]);
890:   PetscFree6(localDiff,funcVal,interpolant,coords,detJ,J);
891:   return(0);
892: }

894: /*@C
895:   DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.

897:   Input Parameters:
898: + dm    - The DM
899: . time  - The time
900: . funcs - The functions to evaluate for each field component: NULL means that component does not contribute to error calculation
901: . ctxs  - Optional array of contexts to pass to each function, or NULL.
902: - X     - The coefficient vector u_h

904:   Output Parameter:
905: . D - A Vec which holds the difference ||u - u_h||_2 for each cell

907:   Level: developer

909: .seealso: DMProjectFunction(), DMComputeL2Diff(), DMPlexComputeL2FieldDiff(), DMComputeL2GradientDiff()
910: @*/
911: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
912: {
913:   PetscSection     section;
914:   PetscQuadrature  quad;
915:   Vec              localX;
916:   PetscScalar     *funcVal, *interpolant;
917:   PetscReal       *coords, *detJ, *J;
918:   const PetscReal *quadPoints, *quadWeights;
919:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, c, field, fieldOffset;
920:   PetscErrorCode   ierr;

923:   VecSet(D, 0.0);
924:   DMGetDimension(dm, &dim);
925:   DMGetCoordinateDim(dm, &coordDim);
926:   DMGetDefaultSection(dm, &section);
927:   PetscSectionGetNumFields(section, &numFields);
928:   DMGetLocalVector(dm, &localX);
929:   DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX);
930:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
931:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
932:   for (field = 0; field < numFields; ++field) {
933:     PetscObject  obj;
934:     PetscClassId id;
935:     PetscInt     Nc;

937:     DMGetField(dm, field, &obj);
938:     PetscObjectGetClassId(obj, &id);
939:     if (id == PETSCFE_CLASSID) {
940:       PetscFE fe = (PetscFE) obj;

942:       PetscFEGetQuadrature(fe, &quad);
943:       PetscFEGetNumComponents(fe, &Nc);
944:     } else if (id == PETSCFV_CLASSID) {
945:       PetscFV fv = (PetscFV) obj;

947:       PetscFVGetQuadrature(fv, &quad);
948:       PetscFVGetNumComponents(fv, &Nc);
949:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
950:     numComponents += Nc;
951:   }
952:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
953:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
954:   PetscMalloc5(numComponents,&funcVal,numComponents,&interpolant,coordDim*Nq,&coords,Nq,&detJ,coordDim*coordDim*Nq,&J);
955:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
956:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
957:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
958:   for (c = cStart; c < cEnd; ++c) {
959:     PetscScalar *x = NULL;
960:     PetscScalar  elemDiff = 0.0;
961:     PetscInt     qc = 0;

963:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, J, NULL, detJ);
964:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

966:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
967:       PetscObject  obj;
968:       PetscClassId id;
969:       void * const ctx = ctxs ? ctxs[field] : NULL;
970:       PetscInt     Nb, Nc, q, fc;

972:       DMGetField(dm, field, &obj);
973:       PetscObjectGetClassId(obj, &id);
974:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
975:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
976:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
977:       if (funcs[field]) {
978:         for (q = 0; q < Nq; ++q) {
979:           if (detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", (double)detJ[q], c, q);
980:           (*funcs[field])(dim, time, &coords[q*coordDim], Nc, funcVal, ctx);
981:           if (ierr) {
982:             PetscErrorCode ierr2;
983:             ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
984:             ierr2 = PetscFree5(funcVal,interpolant,coords,detJ,J);CHKERRQ(ierr2);
985:             ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
986: 
987:           }
988:           if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], q, interpolant);}
989:           else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
990:           else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
991:           for (fc = 0; fc < Nc; ++fc) {
992:             const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
993:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*detJ[q];
994:           }
995:         }
996:       }
997:       fieldOffset += Nb;
998:       qc          += Nc;
999:     }
1000:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
1001:     VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES);
1002:   }
1003:   PetscFree5(funcVal,interpolant,coords,detJ,J);
1004:   DMRestoreLocalVector(dm, &localX);
1005:   VecSqrtAbs(D);
1006:   return(0);
1007: }

1009: /*@C
1010:   DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1, and stores it in a Vec.

1012:   Input Parameters:
1013: + dm - The DM
1014: - LocX  - The coefficient vector u_h

1016:   Output Parameter:
1017: . locC - A Vec which holds the Clement interpolant of the gradient

1019:   Notes: Add citation to (Clement, 1975) and definition of the interpolant
1020:   \nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| where |T_i| is the cell volume

1022:   Level: developer

1024: .seealso: DMProjectFunction(), DMComputeL2Diff(), DMPlexComputeL2FieldDiff(), DMComputeL2GradientDiff()
1025: @*/
1026: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
1027: {
1028:   DM_Plex         *mesh  = (DM_Plex *) dm->data;
1029:   PetscInt         debug = mesh->printFEM;
1030:   DM               dmC;
1031:   PetscSection     section;
1032:   PetscQuadrature  quad;
1033:   PetscScalar     *interpolant, *gradsum;
1034:   PetscReal       *coords, *detJ, *J, *invJ;
1035:   const PetscReal *quadPoints, *quadWeights;
1036:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, vStart, vEnd, v, field, fieldOffset;
1037:   PetscErrorCode   ierr;

1040:   VecGetDM(locC, &dmC);
1041:   VecSet(locC, 0.0);
1042:   DMGetDimension(dm, &dim);
1043:   DMGetCoordinateDim(dm, &coordDim);
1044:   DMGetDefaultSection(dm, &section);
1045:   PetscSectionGetNumFields(section, &numFields);
1046:   for (field = 0; field < numFields; ++field) {
1047:     PetscObject  obj;
1048:     PetscClassId id;
1049:     PetscInt     Nc;

1051:     DMGetField(dm, field, &obj);
1052:     PetscObjectGetClassId(obj, &id);
1053:     if (id == PETSCFE_CLASSID) {
1054:       PetscFE fe = (PetscFE) obj;

1056:       PetscFEGetQuadrature(fe, &quad);
1057:       PetscFEGetNumComponents(fe, &Nc);
1058:     } else if (id == PETSCFV_CLASSID) {
1059:       PetscFV fv = (PetscFV) obj;

1061:       PetscFVGetQuadrature(fv, &quad);
1062:       PetscFVGetNumComponents(fv, &Nc);
1063:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
1064:     numComponents += Nc;
1065:   }
1066:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
1067:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1068:   PetscMalloc6(coordDim*numComponents*2,&gradsum,coordDim*numComponents,&interpolant,coordDim*Nq,&coords,Nq,&detJ,coordDim*coordDim*Nq,&J,coordDim*coordDim*Nq,&invJ);
1069:   DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
1070:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
1071:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1072:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1073:   for (v = vStart; v < vEnd; ++v) {
1074:     PetscScalar volsum = 0.0;
1075:     PetscInt   *star = NULL;
1076:     PetscInt    starSize, st, d, fc;

1078:     PetscMemzero(gradsum, coordDim*numComponents * sizeof(PetscScalar));
1079:     DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);
1080:     for (st = 0; st < starSize*2; st += 2) {
1081:       const PetscInt cell = star[st];
1082:       PetscScalar   *grad = &gradsum[coordDim*numComponents];
1083:       PetscScalar   *x    = NULL;
1084:       PetscReal      vol  = 0.0;

1086:       if ((cell < cStart) || (cell >= cEnd)) continue;
1087:       DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, J, invJ, detJ);
1088:       DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x);
1089:       for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1090:         PetscObject  obj;
1091:         PetscClassId id;
1092:         PetscInt     Nb, Nc, q, qc = 0;

1094:         PetscMemzero(grad, coordDim*numComponents * sizeof(PetscScalar));
1095:         DMGetField(dm, field, &obj);
1096:         PetscObjectGetClassId(obj, &id);
1097:         if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
1098:         else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
1099:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
1100:         for (q = 0; q < Nq; ++q) {
1101:           if (detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", (double)detJ[q], cell, q);
1102:           if (ierr) {
1103:             PetscErrorCode ierr2;
1104:             ierr2 = DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x);CHKERRQ(ierr2);
1105:             ierr2 = DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);CHKERRQ(ierr2);
1106:             ierr2 = PetscFree4(interpolant,coords,detJ,J);CHKERRQ(ierr2);
1107: 
1108:           }
1109:           if (id == PETSCFE_CLASSID)      {PetscFEInterpolateGradient_Static((PetscFE) obj, &x[fieldOffset], coordDim, invJ, NULL, q, interpolant);}
1110:           else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", field);
1111:           for (fc = 0; fc < Nc; ++fc) {
1112:             const PetscReal wt = quadWeights[q*qNc+qc+fc];

1114:             for (d = 0; d < coordDim; ++d) grad[fc*coordDim+d] += interpolant[fc*dim+d]*wt*detJ[q];
1115:           }
1116:           vol += quadWeights[q*qNc]*detJ[q];
1117:         }
1118:         fieldOffset += Nb;
1119:         qc          += Nc;
1120:       }
1121:       DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x);
1122:       for (fc = 0; fc < numComponents; ++fc) {
1123:         for (d = 0; d < coordDim; ++d) {
1124:           gradsum[fc*coordDim+d] += grad[fc*coordDim+d];
1125:         }
1126:       }
1127:       volsum += vol;
1128:       if (debug) {
1129:         PetscPrintf(PETSC_COMM_SELF, "Cell %D gradient: [", cell);
1130:         for (fc = 0; fc < numComponents; ++fc) {
1131:           for (d = 0; d < coordDim; ++d) {
1132:             if (fc || d > 0) {PetscPrintf(PETSC_COMM_SELF, ", ");}
1133:             PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc*coordDim+d]));
1134:           }
1135:         }
1136:         PetscPrintf(PETSC_COMM_SELF, "]\n");
1137:       }
1138:     }
1139:     for (fc = 0; fc < numComponents; ++fc) {
1140:       for (d = 0; d < coordDim; ++d) gradsum[fc*coordDim+d] /= volsum;
1141:     }
1142:     DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);
1143:     DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES);
1144:   }
1145:   PetscFree6(gradsum,interpolant,coords,detJ,J,invJ);
1146:   return(0);
1147: }

1149: static PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec X, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
1150: {
1151:   DM                 dmAux = NULL;
1152:   PetscDS            prob,    probAux;
1153:   PetscSection       section, sectionAux;
1154:   Vec                locX,    locA;
1155:   PetscInt           dim, numCells = cEnd - cStart, cell, c, f;
1156:   PetscBool          useFEM = PETSC_FALSE, useFVM = PETSC_FALSE;
1157:   /* DS */
1158:   PetscInt           Nf,    totDim,    *uOff, *uOff_x, numConstants;
1159:   PetscInt           NfAux, totDimAux, *aOff;
1160:   PetscScalar       *u, *a;
1161:   const PetscScalar *constants;
1162:   /* Geometry */
1163:   PetscFECellGeom   *cgeomFEM;
1164:   DM                 dmGrad;
1165:   Vec                cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
1166:   PetscFVCellGeom   *cgeomFVM;
1167:   const PetscScalar *lgrad;
1168:   PetscErrorCode     ierr;

1171:   DMGetDS(dm, &prob);
1172:   DMGetDimension(dm, &dim);
1173:   DMGetDefaultSection(dm, &section);
1174:   PetscSectionGetNumFields(section, &Nf);
1175:   /* Determine which discretizations we have */
1176:   for (f = 0; f < Nf; ++f) {
1177:     PetscObject  obj;
1178:     PetscClassId id;

1180:     PetscDSGetDiscretization(prob, f, &obj);
1181:     PetscObjectGetClassId(obj, &id);
1182:     if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
1183:     if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
1184:   }
1185:   /* Get local solution with boundary values */
1186:   DMGetLocalVector(dm, &locX);
1187:   DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL);
1188:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX);
1189:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX);
1190:   /* Read DS information */
1191:   PetscDSGetTotalDimension(prob, &totDim);
1192:   PetscDSGetComponentOffsets(prob, &uOff);
1193:   PetscDSGetComponentDerivativeOffsets(prob, &uOff_x);
1194:   PetscDSGetConstants(prob, &numConstants, &constants);
1195:   /* Read Auxiliary DS information */
1196:   PetscObjectQuery((PetscObject) dm, "dmAux", (PetscObject *) &dmAux);
1197:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &locA);
1198:   if (dmAux) {
1199:     DMGetDS(dmAux, &probAux);
1200:     PetscDSGetNumFields(probAux, &NfAux);
1201:     DMGetDefaultSection(dmAux, &sectionAux);
1202:     PetscDSGetTotalDimension(probAux, &totDimAux);
1203:     PetscDSGetComponentOffsets(probAux, &aOff);
1204:   }
1205:   /* Allocate data  arrays */
1206:   PetscCalloc1(numCells*totDim, &u);
1207:   if (useFEM) {PetscMalloc1(numCells, &cgeomFEM);}
1208:   if (dmAux) {PetscMalloc1(numCells*totDimAux, &a);}
1209:   /* Read out geometry */
1210:   if (useFEM) {
1211:     for (cell = cStart; cell < cEnd; ++cell) {
1212:       const PetscInt c = cell - cStart;

1214:       DMPlexComputeCellGeometryFEM(dm, cell, NULL, cgeomFEM[c].v0, cgeomFEM[c].J, cgeomFEM[c].invJ, &cgeomFEM[c].detJ);
1215:       if (cgeomFEM[c].detJ <= 0.0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %d", cgeomFEM[c].detJ, c);
1216:     }
1217:   }
1218:   if (useFVM) {
1219:     PetscFV   fv = NULL;
1220:     Vec       grad;
1221:     PetscInt  fStart, fEnd;
1222:     PetscBool compGrad;

1224:     for (f = 0; f < Nf; ++f) {
1225:       PetscObject  obj;
1226:       PetscClassId id;

1228:       PetscDSGetDiscretization(prob, f, &obj);
1229:       PetscObjectGetClassId(obj, &id);
1230:       if (id == PETSCFV_CLASSID) {fv = (PetscFV) obj; break;}
1231:     }
1232:     PetscFVGetComputeGradients(fv, &compGrad);
1233:     PetscFVSetComputeGradients(fv, PETSC_TRUE);
1234:     DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM);
1235:     DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad);
1236:     PetscFVSetComputeGradients(fv, compGrad);
1237:     VecGetArrayRead(cellGeometryFVM, (const PetscScalar **) &cgeomFVM);
1238:     /* Reconstruct and limit cell gradients */
1239:     DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
1240:     DMGetGlobalVector(dmGrad, &grad);
1241:     DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad);
1242:     /* Communicate gradient values */
1243:     DMGetLocalVector(dmGrad, &locGrad);
1244:     DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad);
1245:     DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad);
1246:     DMRestoreGlobalVector(dmGrad, &grad);
1247:     /* Handle non-essential (e.g. outflow) boundary values */
1248:     DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad);
1249:     VecGetArrayRead(locGrad, &lgrad);
1250:   }
1251:   /* Read out data from inputs */
1252:   for (c = cStart; c < cEnd; ++c) {
1253:     PetscScalar *x = NULL;
1254:     PetscInt     i;

1256:     DMPlexVecGetClosure(dm, section, locX, c, NULL, &x);
1257:     for (i = 0; i < totDim; ++i) u[c*totDim+i] = x[i];
1258:     DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x);
1259:     if (dmAux) {
1260:       DMPlexVecGetClosure(dmAux, sectionAux, locA, c, NULL, &x);
1261:       for (i = 0; i < totDimAux; ++i) a[c*totDimAux+i] = x[i];
1262:       DMPlexVecRestoreClosure(dmAux, sectionAux, locA, c, NULL, &x);
1263:     }
1264:   }
1265:   /* Do integration for each field */
1266:   for (f = 0; f < Nf; ++f) {
1267:     PetscObject  obj;
1268:     PetscClassId id;
1269:     PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

1271:     PetscDSGetDiscretization(prob, f, &obj);
1272:     PetscObjectGetClassId(obj, &id);
1273:     if (id == PETSCFE_CLASSID) {
1274:       PetscFE         fe = (PetscFE) obj;
1275:       PetscQuadrature q;
1276:       PetscInt        Nq, Nb;

1278:       PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches);
1279:       PetscFEGetQuadrature(fe, &q);
1280:       PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL);
1281:       PetscFEGetDimension(fe, &Nb);
1282:       blockSize = Nb*Nq;
1283:       batchSize = numBlocks * blockSize;
1284:       PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches);
1285:       numChunks = numCells / (numBatches*batchSize);
1286:       Ne        = numChunks*numBatches*batchSize;
1287:       Nr        = numCells % (numBatches*batchSize);
1288:       offset    = numCells - Nr;
1289:       PetscFEIntegrate(fe, prob, f, Ne, cgeomFEM, u, probAux, a, cintegral);
1290:       PetscFEIntegrate(fe, prob, f, Nr, &cgeomFEM[offset], &u[offset*totDim], probAux, &a[offset*totDimAux], &cintegral[offset*Nf]);
1291:     } else if (id == PETSCFV_CLASSID) {
1292:       PetscInt       foff;
1293:       PetscPointFunc obj_func;
1294:       PetscScalar    lint;

1296:       PetscDSGetObjective(prob, f, &obj_func);
1297:       PetscDSGetFieldOffset(prob, f, &foff);
1298:       if (obj_func) {
1299:         for (c = 0; c < numCells; ++c) {
1300:           PetscScalar *u_x;

1302:           DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x);
1303:           obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim*c+foff], NULL, u_x, aOff, NULL, &a[totDimAux*c], NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
1304:           cintegral[c*Nf+f] += PetscRealPart(lint)*cgeomFVM[c].volume;
1305:         }
1306:       }
1307:     } else SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", f);
1308:   }
1309:   /* Cleanup data arrays */
1310:   if (useFVM) {
1311:     VecRestoreArrayRead(locGrad, &lgrad);
1312:     VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **) &cgeomFVM);
1313:     DMRestoreLocalVector(dmGrad, &locGrad);
1314:     VecDestroy(&faceGeometryFVM);
1315:     VecDestroy(&cellGeometryFVM);
1316:     DMDestroy(&dmGrad);
1317:   }
1318:   if (useFEM) {PetscFree(cgeomFEM);}
1319:   if (dmAux) {PetscFree(a);}
1320:   PetscFree(u);
1321:   /* Cleanup */
1322:   DMRestoreLocalVector(dm, &locX);
1323:   return(0);
1324: }

1326: /*@
1327:   DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user

1329:   Input Parameters:
1330: + dm - The mesh
1331: . X  - Global input vector
1332: - user - The user context

1334:   Output Parameter:
1335: . integral - Integral for each field

1337:   Level: developer

1339: .seealso: DMPlexComputeResidualFEM()
1340: @*/
1341: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
1342: {
1343:   DM_Plex       *mesh = (DM_Plex *) dm->data;
1344:   PetscScalar   *cintegral, *lintegral;
1345:   PetscInt       Nf, f, cellHeight, cStart, cEnd, cEndInterior[4], cell;

1352:   PetscLogEventBegin(DMPLEX_IntegralFEM,dm,0,0,0);
1353:   DMGetNumFields(dm, &Nf);
1354:   DMPlexGetVTKCellHeight(dm, &cellHeight);
1355:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
1356:   DMPlexGetHybridBounds(dm, &cEndInterior[0], &cEndInterior[1], &cEndInterior[2], &cEndInterior[3]);
1357:   cEnd = cEndInterior[cellHeight] < 0 ? cEnd : cEndInterior[cellHeight];
1358:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
1359:   PetscCalloc2(Nf, &lintegral, (cEnd-cStart)*Nf, &cintegral);
1360:   DMPlexComputeIntegral_Internal(dm, X, cStart, cEnd, cintegral, user);
1361:   /* Sum up values */
1362:   for (cell = cStart; cell < cEnd; ++cell) {
1363:     const PetscInt c = cell - cStart;

1365:     if (mesh->printFEM > 1) {DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c*Nf]);}
1366:     for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c*Nf+f];
1367:   }
1368:   MPIU_Allreduce(lintegral, integral, Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject) dm));
1369:   if (mesh->printFEM) {
1370:     PetscPrintf(PetscObjectComm((PetscObject) dm), "Integral:");
1371:     for (f = 0; f < Nf; ++f) {PetscPrintf(PetscObjectComm((PetscObject) dm), " %g", (double) PetscRealPart(integral[f]));}
1372:     PetscPrintf(PetscObjectComm((PetscObject) dm), "\n");
1373:   }
1374:   PetscFree2(lintegral, cintegral);
1375:   PetscLogEventEnd(DMPLEX_IntegralFEM,dm,0,0,0);
1376:   return(0);
1377: }

1379: /*@
1380:   DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user

1382:   Input Parameters:
1383: + dm - The mesh
1384: . X  - Global input vector
1385: - user - The user context

1387:   Output Parameter:
1388: . integral - Cellwise integrals for each field

1390:   Level: developer

1392: .seealso: DMPlexComputeResidualFEM()
1393: @*/
1394: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
1395: {
1396:   DM_Plex       *mesh = (DM_Plex *) dm->data;
1397:   DM             dmF;
1398:   PetscSection   sectionF;
1399:   PetscScalar   *cintegral, *af;
1400:   PetscInt       Nf, f, cellHeight, cStart, cEnd, cEndInterior[4], cell;

1407:   PetscLogEventBegin(DMPLEX_IntegralFEM,dm,0,0,0);
1408:   DMGetNumFields(dm, &Nf);
1409:   DMPlexGetVTKCellHeight(dm, &cellHeight);
1410:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
1411:   DMPlexGetHybridBounds(dm, &cEndInterior[0], &cEndInterior[1], &cEndInterior[2], &cEndInterior[3]);
1412:   cEnd = cEndInterior[cellHeight] < 0 ? cEnd : cEndInterior[cellHeight];
1413:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
1414:   PetscCalloc1((cEnd-cStart)*Nf, &cintegral);
1415:   DMPlexComputeIntegral_Internal(dm, X, cStart, cEnd, cintegral, user);
1416:   /* Put values in F*/
1417:   VecGetDM(F, &dmF);
1418:   DMGetDefaultSection(dmF, &sectionF);
1419:   VecGetArray(F, &af);
1420:   for (cell = cStart; cell < cEnd; ++cell) {
1421:     const PetscInt c = cell - cStart;
1422:     PetscInt       dof, off;

1424:     if (mesh->printFEM > 1) {DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c*Nf]);}
1425:     PetscSectionGetDof(sectionF, cell, &dof);
1426:     PetscSectionGetOffset(sectionF, cell, &off);
1427:     if (dof != Nf) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %D != %D", dof, Nf);
1428:     for (f = 0; f < Nf; ++f) af[off+f] = cintegral[c*Nf+f];
1429:   }
1430:   VecRestoreArray(F, &af);
1431:   PetscFree(cintegral);
1432:   PetscLogEventEnd(DMPLEX_IntegralFEM,dm,0,0,0);
1433:   return(0);
1434: }

1436: /*@
1437:   DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix I from the coarse DM to the uniformly refined DM.

1439:   Input Parameters:
1440: + dmf  - The fine mesh
1441: . dmc  - The coarse mesh
1442: - user - The user context

1444:   Output Parameter:
1445: . In  - The interpolation matrix

1447:   Level: developer

1449: .seealso: DMPlexComputeInterpolatorGeneral(), DMPlexComputeJacobianFEM()
1450: @*/
1451: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, Mat In, void *user)
1452: {
1453:   DM_Plex          *mesh  = (DM_Plex *) dmc->data;
1454:   const char       *name  = "Interpolator";
1455:   PetscDS           prob;
1456:   PetscFE          *feRef;
1457:   PetscFV          *fvRef;
1458:   PetscSection      fsection, fglobalSection;
1459:   PetscSection      csection, cglobalSection;
1460:   PetscScalar      *elemMat;
1461:   PetscInt          dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, cEndInterior, c;
1462:   PetscInt          cTotDim, rTotDim = 0;
1463:   PetscErrorCode    ierr;

1466:   PetscLogEventBegin(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
1467:   DMGetDimension(dmf, &dim);
1468:   DMGetDefaultSection(dmf, &fsection);
1469:   DMGetDefaultGlobalSection(dmf, &fglobalSection);
1470:   DMGetDefaultSection(dmc, &csection);
1471:   DMGetDefaultGlobalSection(dmc, &cglobalSection);
1472:   PetscSectionGetNumFields(fsection, &Nf);
1473:   DMPlexGetHeightStratum(dmc, 0, &cStart, &cEnd);
1474:   DMPlexGetHybridBounds(dmc, &cEndInterior, NULL, NULL, NULL);
1475:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1476:   DMGetDS(dmf, &prob);
1477:   PetscCalloc2(Nf,&feRef,Nf,&fvRef);
1478:   for (f = 0; f < Nf; ++f) {
1479:     PetscObject  obj;
1480:     PetscClassId id;
1481:     PetscInt     rNb = 0, Nc = 0;

1483:     PetscDSGetDiscretization(prob, f, &obj);
1484:     PetscObjectGetClassId(obj, &id);
1485:     if (id == PETSCFE_CLASSID) {
1486:       PetscFE fe = (PetscFE) obj;

1488:       PetscFERefine(fe, &feRef[f]);
1489:       PetscFEGetDimension(feRef[f], &rNb);
1490:       PetscFEGetNumComponents(fe, &Nc);
1491:     } else if (id == PETSCFV_CLASSID) {
1492:       PetscFV        fv = (PetscFV) obj;
1493:       PetscDualSpace Q;

1495:       PetscFVRefine(fv, &fvRef[f]);
1496:       PetscFVGetDualSpace(fvRef[f], &Q);
1497:       PetscDualSpaceGetDimension(Q, &rNb);
1498:       PetscFVGetNumComponents(fv, &Nc);
1499:     }
1500:     rTotDim += rNb;
1501:   }
1502:   PetscDSGetTotalDimension(prob, &cTotDim);
1503:   PetscMalloc1(rTotDim*cTotDim,&elemMat);
1504:   PetscMemzero(elemMat, rTotDim*cTotDim * sizeof(PetscScalar));
1505:   for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
1506:     PetscDualSpace   Qref;
1507:     PetscQuadrature  f;
1508:     const PetscReal *qpoints, *qweights;
1509:     PetscReal       *points;
1510:     PetscInt         npoints = 0, Nc, Np, fpdim, i, k, p, d;

1512:     /* Compose points from all dual basis functionals */
1513:     if (feRef[fieldI]) {
1514:       PetscFEGetDualSpace(feRef[fieldI], &Qref);
1515:       PetscFEGetNumComponents(feRef[fieldI], &Nc);
1516:     } else {
1517:       PetscFVGetDualSpace(fvRef[fieldI], &Qref);
1518:       PetscFVGetNumComponents(fvRef[fieldI], &Nc);
1519:     }
1520:     PetscDualSpaceGetDimension(Qref, &fpdim);
1521:     for (i = 0; i < fpdim; ++i) {
1522:       PetscDualSpaceGetFunctional(Qref, i, &f);
1523:       PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL);
1524:       npoints += Np;
1525:     }
1526:     PetscMalloc1(npoints*dim,&points);
1527:     for (i = 0, k = 0; i < fpdim; ++i) {
1528:       PetscDualSpaceGetFunctional(Qref, i, &f);
1529:       PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL);
1530:       for (p = 0; p < Np; ++p, ++k) for (d = 0; d < dim; ++d) points[k*dim+d] = qpoints[p*dim+d];
1531:     }

1533:     for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
1534:       PetscObject  obj;
1535:       PetscClassId id;
1536:       PetscReal   *B;
1537:       PetscInt     NcJ = 0, cpdim = 0, j, qNc;

1539:       PetscDSGetDiscretization(prob, fieldJ, &obj);
1540:       PetscObjectGetClassId(obj, &id);
1541:       if (id == PETSCFE_CLASSID) {
1542:         PetscFE fe = (PetscFE) obj;

1544:         /* Evaluate basis at points */
1545:         PetscFEGetNumComponents(fe, &NcJ);
1546:         PetscFEGetDimension(fe, &cpdim);
1547:         /* For now, fields only interpolate themselves */
1548:         if (fieldI == fieldJ) {
1549:           if (Nc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %D does not match coarse field %D", Nc, NcJ);
1550:           PetscFEGetTabulation(fe, npoints, points, &B, NULL, NULL);
1551:           for (i = 0, k = 0; i < fpdim; ++i) {
1552:             PetscDualSpaceGetFunctional(Qref, i, &f);
1553:             PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights);
1554:             if (qNc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, NcJ);
1555:             for (p = 0; p < Np; ++p, ++k) {
1556:               for (j = 0; j < cpdim; ++j) {
1557:                 /* NOTE: This is not quite right, unless fpdim == number of fine grid functional quad points */
1558:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i)*cTotDim + offsetJ + j] += B[k*cpdim*NcJ+j*Nc+c]*qweights[p*qNc+c];
1559:               }
1560:             }
1561:           }
1562:           PetscFERestoreTabulation(fe, npoints, points, &B, NULL, NULL);
1563:         }
1564:       } else if (id == PETSCFV_CLASSID) {
1565:         PetscFV        fv = (PetscFV) obj;

1567:         /* Evaluate constant function at points */
1568:         PetscFVGetNumComponents(fv, &NcJ);
1569:         cpdim = 1;
1570:         /* For now, fields only interpolate themselves */
1571:         if (fieldI == fieldJ) {
1572:           if (Nc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %d does not match coarse field %d", Nc, NcJ);
1573:           for (i = 0, k = 0; i < fpdim; ++i) {
1574:             PetscDualSpaceGetFunctional(Qref, i, &f);
1575:             PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights);
1576:             if (qNc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, NcJ);
1577:             for (p = 0; p < Np; ++p, ++k) {
1578:               for (j = 0; j < cpdim; ++j) {
1579:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i*Nc + c)*cTotDim + offsetJ + j*NcJ + c] += 1.0*qweights[p*qNc+c];
1580:               }
1581:             }
1582:           }
1583:         }
1584:       }
1585:       offsetJ += cpdim*NcJ;
1586:     }
1587:     offsetI += fpdim*Nc;
1588:     PetscFree(points);
1589:   }
1590:   if (mesh->printFEM > 1) {DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat);}
1591:   /* Preallocate matrix */
1592:   {
1593:     Mat          preallocator;
1594:     PetscScalar *vals;
1595:     PetscInt    *cellCIndices, *cellFIndices;
1596:     PetscInt     locRows, locCols, cell;

1598:     MatGetLocalSize(In, &locRows, &locCols);
1599:     MatCreate(PetscObjectComm((PetscObject) In), &preallocator);
1600:     MatSetType(preallocator, MATPREALLOCATOR);
1601:     MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE);
1602:     MatSetUp(preallocator);
1603:     PetscCalloc3(rTotDim*cTotDim, &vals,cTotDim,&cellCIndices,rTotDim,&cellFIndices);
1604:     for (cell = cStart; cell < cEnd; ++cell) {
1605:       DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices);
1606:       MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES);
1607:     }
1608:     PetscFree3(vals,cellCIndices,cellFIndices);
1609:     MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY);
1610:     MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY);
1611:     MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In);
1612:     MatDestroy(&preallocator);
1613:   }
1614:   /* Fill matrix */
1615:   MatZeroEntries(In);
1616:   for (c = cStart; c < cEnd; ++c) {
1617:     DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES);
1618:   }
1619:   for (f = 0; f < Nf; ++f) {PetscFEDestroy(&feRef[f]);}
1620:   PetscFree2(feRef,fvRef);
1621:   PetscFree(elemMat);
1622:   MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY);
1623:   MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY);
1624:   if (mesh->printFEM) {
1625:     PetscPrintf(PETSC_COMM_WORLD, "%s:\n", name);
1626:     MatChop(In, 1.0e-10);
1627:     MatView(In, PETSC_VIEWER_STDOUT_WORLD);
1628:   }
1629:   PetscLogEventEnd(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
1630:   return(0);
1631: }

1633: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
1634: {
1635:   SETERRQ(PetscObjectComm((PetscObject) dmc), PETSC_ERR_SUP, "Laziness");
1636: }

1638: /*@
1639:   DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix I from the coarse DM to a non-nested fine DM.

1641:   Input Parameters:
1642: + dmf  - The fine mesh
1643: . dmc  - The coarse mesh
1644: - user - The user context

1646:   Output Parameter:
1647: . In  - The interpolation matrix

1649:   Level: developer

1651: .seealso: DMPlexComputeInterpolatorNested(), DMPlexComputeJacobianFEM()
1652: @*/
1653: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
1654: {
1655:   DM_Plex       *mesh = (DM_Plex *) dmf->data;
1656:   const char    *name = "Interpolator";
1657:   PetscDS        prob;
1658:   PetscSection   fsection, csection, globalFSection, globalCSection;
1659:   PetscHashJK    ht;
1660:   PetscLayout    rLayout;
1661:   PetscInt      *dnz, *onz;
1662:   PetscInt       locRows, rStart, rEnd;
1663:   PetscReal     *x, *v0, *J, *invJ, detJ;
1664:   PetscReal     *v0c, *Jc, *invJc, detJc;
1665:   PetscScalar   *elemMat;
1666:   PetscInt       dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

1670:   PetscLogEventBegin(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
1671:   DMGetCoordinateDim(dmc, &dim);
1672:   DMGetDS(dmc, &prob);
1673:   PetscDSGetRefCoordArrays(prob, &x, NULL);
1674:   PetscDSGetNumFields(prob, &Nf);
1675:   PetscMalloc3(dim,&v0,dim*dim,&J,dim*dim,&invJ);
1676:   PetscMalloc3(dim,&v0c,dim*dim,&Jc,dim*dim,&invJc);
1677:   DMGetDefaultSection(dmf, &fsection);
1678:   DMGetDefaultGlobalSection(dmf, &globalFSection);
1679:   DMGetDefaultSection(dmc, &csection);
1680:   DMGetDefaultGlobalSection(dmc, &globalCSection);
1681:   DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd);
1682:   PetscDSGetTotalDimension(prob, &totDim);
1683:   PetscMalloc1(totDim, &elemMat);

1685:   MatGetLocalSize(In, &locRows, NULL);
1686:   PetscLayoutCreate(PetscObjectComm((PetscObject) In), &rLayout);
1687:   PetscLayoutSetLocalSize(rLayout, locRows);
1688:   PetscLayoutSetBlockSize(rLayout, 1);
1689:   PetscLayoutSetUp(rLayout);
1690:   PetscLayoutGetRange(rLayout, &rStart, &rEnd);
1691:   PetscLayoutDestroy(&rLayout);
1692:   PetscCalloc2(locRows,&dnz,locRows,&onz);
1693:   PetscHashJKCreate(&ht);
1694:   for (field = 0; field < Nf; ++field) {
1695:     PetscObject      obj;
1696:     PetscClassId     id;
1697:     PetscDualSpace   Q = NULL;
1698:     PetscQuadrature  f;
1699:     const PetscReal *qpoints;
1700:     PetscInt         Nc, Np, fpdim, i, d;

1702:     PetscDSGetDiscretization(prob, field, &obj);
1703:     PetscObjectGetClassId(obj, &id);
1704:     if (id == PETSCFE_CLASSID) {
1705:       PetscFE fe = (PetscFE) obj;

1707:       PetscFEGetDualSpace(fe, &Q);
1708:       PetscFEGetNumComponents(fe, &Nc);
1709:     } else if (id == PETSCFV_CLASSID) {
1710:       PetscFV fv = (PetscFV) obj;

1712:       PetscFVGetDualSpace(fv, &Q);
1713:       Nc   = 1;
1714:     }
1715:     PetscDualSpaceGetDimension(Q, &fpdim);
1716:     /* For each fine grid cell */
1717:     for (cell = cStart; cell < cEnd; ++cell) {
1718:       PetscInt *findices,   *cindices;
1719:       PetscInt  numFIndices, numCIndices;

1721:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
1722:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
1723:       if (numFIndices != fpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %d != %d dual basis vecs", numFIndices, fpdim);
1724:       for (i = 0; i < fpdim; ++i) {
1725:         Vec             pointVec;
1726:         PetscScalar    *pV;
1727:         PetscSF         coarseCellSF = NULL;
1728:         const PetscSFNode *coarseCells;
1729:         PetscInt        numCoarseCells, q, c;

1731:         /* Get points from the dual basis functional quadrature */
1732:         PetscDualSpaceGetFunctional(Q, i, &f);
1733:         PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL);
1734:         VecCreateSeq(PETSC_COMM_SELF, Np*dim, &pointVec);
1735:         VecSetBlockSize(pointVec, dim);
1736:         VecGetArray(pointVec, &pV);
1737:         for (q = 0; q < Np; ++q) {
1738:           /* Transform point to real space */
1739:           CoordinatesRefToReal(dim, dim, v0, J, &qpoints[q*dim], x);
1740:           for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
1741:         }
1742:         VecRestoreArray(pointVec, &pV);
1743:         /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
1744:         /* OPT: Pack all quad points from fine cell */
1745:         DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
1746:         PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view");
1747:         /* Update preallocation info */
1748:         PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
1749:         if (numCoarseCells != Np) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
1750:         {
1751:           PetscHashJKKey  key;
1752:           PetscHashJKIter missing, iter;

1754:           key.j = findices[i];
1755:           if (key.j >= 0) {
1756:             /* Get indices for coarse elements */
1757:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
1758:               DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
1759:               for (c = 0; c < numCIndices; ++c) {
1760:                 key.k = cindices[c];
1761:                 if (key.k < 0) continue;
1762:                 PetscHashJKPut(ht, key, &missing, &iter);
1763:                 if (missing) {
1764:                   PetscHashJKSet(ht, iter, 1);
1765:                   if ((key.k >= rStart) && (key.k < rEnd)) ++dnz[key.j-rStart];
1766:                   else                                     ++onz[key.j-rStart];
1767:                 }
1768:               }
1769:               DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
1770:             }
1771:           }
1772:         }
1773:         PetscSFDestroy(&coarseCellSF);
1774:         VecDestroy(&pointVec);
1775:       }
1776:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
1777:     }
1778:   }
1779:   PetscHashJKDestroy(&ht);
1780:   MatXAIJSetPreallocation(In, 1, dnz, onz, NULL, NULL);
1781:   MatSetOption(In, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);
1782:   PetscFree2(dnz,onz);
1783:   for (field = 0; field < Nf; ++field) {
1784:     PetscObject      obj;
1785:     PetscClassId     id;
1786:     PetscDualSpace   Q = NULL;
1787:     PetscQuadrature  f;
1788:     const PetscReal *qpoints, *qweights;
1789:     PetscInt         Nc, qNc, Np, fpdim, i, d;

1791:     PetscDSGetDiscretization(prob, field, &obj);
1792:     PetscObjectGetClassId(obj, &id);
1793:     if (id == PETSCFE_CLASSID) {
1794:       PetscFE fe = (PetscFE) obj;

1796:       PetscFEGetDualSpace(fe, &Q);
1797:       PetscFEGetNumComponents(fe, &Nc);
1798:     } else if (id == PETSCFV_CLASSID) {
1799:       PetscFV fv = (PetscFV) obj;

1801:       PetscFVGetDualSpace(fv, &Q);
1802:       Nc   = 1;
1803:     } else SETERRQ1(PetscObjectComm((PetscObject)dmc),PETSC_ERR_ARG_WRONG,"Unknown discretization type for field %d",field);
1804:     PetscDualSpaceGetDimension(Q, &fpdim);
1805:     /* For each fine grid cell */
1806:     for (cell = cStart; cell < cEnd; ++cell) {
1807:       PetscInt *findices,   *cindices;
1808:       PetscInt  numFIndices, numCIndices;

1810:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
1811:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
1812:       if (numFIndices != fpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %d != %d dual basis vecs", numFIndices, fpdim);
1813:       for (i = 0; i < fpdim; ++i) {
1814:         Vec             pointVec;
1815:         PetscScalar    *pV;
1816:         PetscSF         coarseCellSF = NULL;
1817:         const PetscSFNode *coarseCells;
1818:         PetscInt        numCoarseCells, cpdim, q, c, j;

1820:         /* Get points from the dual basis functional quadrature */
1821:         PetscDualSpaceGetFunctional(Q, i, &f);
1822:         PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights);
1823:         if (qNc != Nc) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, Nc);
1824:         VecCreateSeq(PETSC_COMM_SELF, Np*dim, &pointVec);
1825:         VecSetBlockSize(pointVec, dim);
1826:         VecGetArray(pointVec, &pV);
1827:         for (q = 0; q < Np; ++q) {
1828:           /* Transform point to real space */
1829:           CoordinatesRefToReal(dim, dim, v0, J, &qpoints[q*dim], x);
1830:           for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
1831:         }
1832:         VecRestoreArray(pointVec, &pV);
1833:         /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
1834:         /* OPT: Read this out from preallocation information */
1835:         DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
1836:         /* Update preallocation info */
1837:         PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
1838:         if (numCoarseCells != Np) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
1839:         VecGetArray(pointVec, &pV);
1840:         for (ccell = 0; ccell < numCoarseCells; ++ccell) {
1841:           PetscReal pVReal[3];

1843:           DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
1844:           /* Transform points from real space to coarse reference space */
1845:           DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc);
1846:           for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell*dim+d]);
1847:           CoordinatesRealToRef(dim, dim, v0c, invJc, pVReal, x);

1849:           if (id == PETSCFE_CLASSID) {
1850:             PetscFE    fe = (PetscFE) obj;
1851:             PetscReal *B;

1853:             /* Evaluate coarse basis on contained point */
1854:             PetscFEGetDimension(fe, &cpdim);
1855:             PetscFEGetTabulation(fe, 1, x, &B, NULL, NULL);
1856:             PetscMemzero(elemMat, cpdim * sizeof(PetscScalar));
1857:             /* Get elemMat entries by multiplying by weight */
1858:             for (j = 0; j < cpdim; ++j) {
1859:               for (c = 0; c < Nc; ++c) elemMat[j] += B[j*Nc + c]*qweights[ccell*qNc + c];
1860:             }
1861:             PetscFERestoreTabulation(fe, 1, x, &B, NULL, NULL);
1862:           } else {
1863:             cpdim = 1;
1864:             for (j = 0; j < cpdim; ++j) {
1865:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0*qweights[ccell*qNc + c];
1866:             }
1867:           }
1868:           /* Update interpolator */
1869:           if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
1870:           if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
1871:           MatSetValues(In, 1, &findices[i], numCIndices, cindices, elemMat, INSERT_VALUES);
1872:           DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
1873:         }
1874:         VecRestoreArray(pointVec, &pV);
1875:         PetscSFDestroy(&coarseCellSF);
1876:         VecDestroy(&pointVec);
1877:       }
1878:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
1879:     }
1880:   }
1881:   PetscFree3(v0,J,invJ);
1882:   PetscFree3(v0c,Jc,invJc);
1883:   PetscFree(elemMat);
1884:   MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY);
1885:   MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY);
1886:   PetscLogEventEnd(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
1887:   return(0);
1888: }

1890: /*@
1891:   DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix M from the coarse DM to a non-nested fine DM.

1893:   Input Parameters:
1894: + dmf  - The fine mesh
1895: . dmc  - The coarse mesh
1896: - user - The user context

1898:   Output Parameter:
1899: . mass  - The mass matrix

1901:   Level: developer

1903: .seealso: DMPlexComputeMassMatrixNested(), DMPlexComputeInterpolatorNested(), DMPlexComputeInterpolatorGeneral(), DMPlexComputeJacobianFEM()
1904: @*/
1905: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
1906: {
1907:   DM_Plex       *mesh = (DM_Plex *) dmf->data;
1908:   const char    *name = "Mass Matrix";
1909:   PetscDS        prob;
1910:   PetscSection   fsection, csection, globalFSection, globalCSection;
1911:   PetscHashJK    ht;
1912:   PetscLayout    rLayout;
1913:   PetscInt      *dnz, *onz;
1914:   PetscInt       locRows, rStart, rEnd;
1915:   PetscReal     *x, *v0, *J, *invJ, detJ;
1916:   PetscReal     *v0c, *Jc, *invJc, detJc;
1917:   PetscScalar   *elemMat;
1918:   PetscInt       dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

1922:   DMGetCoordinateDim(dmc, &dim);
1923:   DMGetDS(dmc, &prob);
1924:   PetscDSGetRefCoordArrays(prob, &x, NULL);
1925:   PetscDSGetNumFields(prob, &Nf);
1926:   PetscMalloc3(dim,&v0,dim*dim,&J,dim*dim,&invJ);
1927:   PetscMalloc3(dim,&v0c,dim*dim,&Jc,dim*dim,&invJc);
1928:   DMGetDefaultSection(dmf, &fsection);
1929:   DMGetDefaultGlobalSection(dmf, &globalFSection);
1930:   DMGetDefaultSection(dmc, &csection);
1931:   DMGetDefaultGlobalSection(dmc, &globalCSection);
1932:   DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd);
1933:   PetscDSGetTotalDimension(prob, &totDim);
1934:   PetscMalloc1(totDim, &elemMat);

1936:   MatGetLocalSize(mass, &locRows, NULL);
1937:   PetscLayoutCreate(PetscObjectComm((PetscObject) mass), &rLayout);
1938:   PetscLayoutSetLocalSize(rLayout, locRows);
1939:   PetscLayoutSetBlockSize(rLayout, 1);
1940:   PetscLayoutSetUp(rLayout);
1941:   PetscLayoutGetRange(rLayout, &rStart, &rEnd);
1942:   PetscLayoutDestroy(&rLayout);
1943:   PetscCalloc2(locRows,&dnz,locRows,&onz);
1944:   PetscHashJKCreate(&ht);
1945:   for (field = 0; field < Nf; ++field) {
1946:     PetscObject      obj;
1947:     PetscClassId     id;
1948:     PetscQuadrature  quad;
1949:     const PetscReal *qpoints;
1950:     PetscInt         Nq, Nc, i, d;

1952:     PetscDSGetDiscretization(prob, field, &obj);
1953:     PetscObjectGetClassId(obj, &id);
1954:     if (id == PETSCFE_CLASSID) {PetscFEGetQuadrature((PetscFE) obj, &quad);}
1955:     else                       {PetscFVGetQuadrature((PetscFV) obj, &quad);}
1956:     PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL);
1957:     /* For each fine grid cell */
1958:     for (cell = cStart; cell < cEnd; ++cell) {
1959:       Vec                pointVec;
1960:       PetscScalar       *pV;
1961:       PetscSF            coarseCellSF = NULL;
1962:       const PetscSFNode *coarseCells;
1963:       PetscInt           numCoarseCells, q, c;
1964:       PetscInt          *findices,   *cindices;
1965:       PetscInt           numFIndices, numCIndices;

1967:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
1968:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
1969:       /* Get points from the quadrature */
1970:       VecCreateSeq(PETSC_COMM_SELF, Nq*dim, &pointVec);
1971:       VecSetBlockSize(pointVec, dim);
1972:       VecGetArray(pointVec, &pV);
1973:       for (q = 0; q < Nq; ++q) {
1974:         /* Transform point to real space */
1975:         CoordinatesRefToReal(dim, dim, v0, J, &qpoints[q*dim], x);
1976:         for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
1977:       }
1978:       VecRestoreArray(pointVec, &pV);
1979:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
1980:       DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
1981:       PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view");
1982:       /* Update preallocation info */
1983:       PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
1984:       if (numCoarseCells != Nq) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
1985:       {
1986:         PetscHashJKKey  key;
1987:         PetscHashJKIter missing, iter;

1989:         for (i = 0; i < numFIndices; ++i) {
1990:           key.j = findices[i];
1991:           if (key.j >= 0) {
1992:             /* Get indices for coarse elements */
1993:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
1994:               DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
1995:               for (c = 0; c < numCIndices; ++c) {
1996:                 key.k = cindices[c];
1997:                 if (key.k < 0) continue;
1998:                 PetscHashJKPut(ht, key, &missing, &iter);
1999:                 if (missing) {
2000:                   PetscHashJKSet(ht, iter, 1);
2001:                   if ((key.k >= rStart) && (key.k < rEnd)) ++dnz[key.j-rStart];
2002:                   else                                     ++onz[key.j-rStart];
2003:                 }
2004:               }
2005:               DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2006:             }
2007:           }
2008:         }
2009:       }
2010:       PetscSFDestroy(&coarseCellSF);
2011:       VecDestroy(&pointVec);
2012:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2013:     }
2014:   }
2015:   PetscHashJKDestroy(&ht);
2016:   MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL);
2017:   MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);
2018:   PetscFree2(dnz,onz);
2019:   for (field = 0; field < Nf; ++field) {
2020:     PetscObject      obj;
2021:     PetscClassId     id;
2022:     PetscQuadrature  quad;
2023:     PetscReal       *Bfine;
2024:     const PetscReal *qpoints, *qweights;
2025:     PetscInt         Nq, Nc, i, d;

2027:     PetscDSGetDiscretization(prob, field, &obj);
2028:     PetscObjectGetClassId(obj, &id);
2029:     if (id == PETSCFE_CLASSID) {PetscFEGetQuadrature((PetscFE) obj, &quad);PetscFEGetDefaultTabulation((PetscFE) obj, &Bfine, NULL, NULL);}
2030:     else                       {PetscFVGetQuadrature((PetscFV) obj, &quad);}
2031:     PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights);
2032:     /* For each fine grid cell */
2033:     for (cell = cStart; cell < cEnd; ++cell) {
2034:       Vec                pointVec;
2035:       PetscScalar       *pV;
2036:       PetscSF            coarseCellSF = NULL;
2037:       const PetscSFNode *coarseCells;
2038:       PetscInt           numCoarseCells, cpdim, q, c, j;
2039:       PetscInt          *findices,   *cindices;
2040:       PetscInt           numFIndices, numCIndices;

2042:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2043:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
2044:       /* Get points from the quadrature */
2045:       VecCreateSeq(PETSC_COMM_SELF, Nq*dim, &pointVec);
2046:       VecSetBlockSize(pointVec, dim);
2047:       VecGetArray(pointVec, &pV);
2048:       for (q = 0; q < Nq; ++q) {
2049:         /* Transform point to real space */
2050:         CoordinatesRefToReal(dim, dim, v0, J, &qpoints[q*dim], x);
2051:         for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
2052:       }
2053:       VecRestoreArray(pointVec, &pV);
2054:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
2055:       DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
2056:       /* Update matrix */
2057:       PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
2058:       if (numCoarseCells != Nq) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
2059:       VecGetArray(pointVec, &pV);
2060:       for (ccell = 0; ccell < numCoarseCells; ++ccell) {
2061:         PetscReal pVReal[3];

2063:         DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2064:         /* Transform points from real space to coarse reference space */
2065:         DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc);
2066:         for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell*dim+d]);
2067:         CoordinatesRealToRef(dim, dim, v0c, invJc, pVReal, x);

2069:         if (id == PETSCFE_CLASSID) {
2070:           PetscFE    fe = (PetscFE) obj;
2071:           PetscReal *B;

2073:           /* Evaluate coarse basis on contained point */
2074:           PetscFEGetDimension(fe, &cpdim);
2075:           PetscFEGetTabulation(fe, 1, x, &B, NULL, NULL);
2076:           /* Get elemMat entries by multiplying by weight */
2077:           for (i = 0; i < numFIndices; ++i) {
2078:             PetscMemzero(elemMat, cpdim * sizeof(PetscScalar));
2079:             for (j = 0; j < cpdim; ++j) {
2080:               for (c = 0; c < Nc; ++c) elemMat[j] += B[j*Nc + c]*Bfine[(ccell*numFIndices + i)*Nc + c]*qweights[ccell*Nc + c]*detJ;
2081:             }
2082:             /* Update interpolator */
2083:             if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
2084:             if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
2085:             MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES);
2086:           }
2087:           PetscFERestoreTabulation(fe, 1, x, &B, NULL, NULL);
2088:         } else {
2089:           cpdim = 1;
2090:           for (i = 0; i < numFIndices; ++i) {
2091:             PetscMemzero(elemMat, cpdim * sizeof(PetscScalar));
2092:             for (j = 0; j < cpdim; ++j) {
2093:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0*1.0*qweights[ccell*Nc + c]*detJ;
2094:             }
2095:             /* Update interpolator */
2096:             if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
2097:             PetscPrintf(PETSC_COMM_SELF, "Nq: %d %d Nf: %d %d Nc: %d %d\n", ccell, Nq, i, numFIndices, j, numCIndices);
2098:             if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
2099:             MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES);
2100:           }
2101:         }
2102:         DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2103:       }
2104:       VecRestoreArray(pointVec, &pV);
2105:       PetscSFDestroy(&coarseCellSF);
2106:       VecDestroy(&pointVec);
2107:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2108:     }
2109:   }
2110:   PetscFree3(v0,J,invJ);
2111:   PetscFree3(v0c,Jc,invJc);
2112:   PetscFree(elemMat);
2113:   MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY);
2114:   MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY);
2115:   return(0);
2116: }

2118: /*@
2119:   DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns

2121:   Input Parameters:
2122: + dmc  - The coarse mesh
2123: - dmf  - The fine mesh
2124: - user - The user context

2126:   Output Parameter:
2127: . sc   - The mapping

2129:   Level: developer

2131: .seealso: DMPlexComputeInterpolatorNested(), DMPlexComputeJacobianFEM()
2132: @*/
2133: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
2134: {
2135:   PetscDS        prob;
2136:   PetscFE       *feRef;
2137:   PetscFV       *fvRef;
2138:   Vec            fv, cv;
2139:   IS             fis, cis;
2140:   PetscSection   fsection, fglobalSection, csection, cglobalSection;
2141:   PetscInt      *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
2142:   PetscInt       cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, cEndInterior, c, dim, d, startC, endC, offsetC, offsetF, m;

2146:   PetscLogEventBegin(DMPLEX_InjectorFEM,dmc,dmf,0,0);
2147:   DMGetDimension(dmf, &dim);
2148:   DMGetDefaultSection(dmf, &fsection);
2149:   DMGetDefaultGlobalSection(dmf, &fglobalSection);
2150:   DMGetDefaultSection(dmc, &csection);
2151:   DMGetDefaultGlobalSection(dmc, &cglobalSection);
2152:   PetscSectionGetNumFields(fsection, &Nf);
2153:   DMPlexGetHeightStratum(dmc, 0, &cStart, &cEnd);
2154:   DMPlexGetHybridBounds(dmc, &cEndInterior, NULL, NULL, NULL);
2155:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
2156:   DMGetDS(dmc, &prob);
2157:   PetscCalloc2(Nf,&feRef,Nf,&fvRef);
2158:   for (f = 0; f < Nf; ++f) {
2159:     PetscObject  obj;
2160:     PetscClassId id;
2161:     PetscInt     fNb = 0, Nc = 0;

2163:     PetscDSGetDiscretization(prob, f, &obj);
2164:     PetscObjectGetClassId(obj, &id);
2165:     if (id == PETSCFE_CLASSID) {
2166:       PetscFE fe = (PetscFE) obj;

2168:       PetscFERefine(fe, &feRef[f]);
2169:       PetscFEGetDimension(feRef[f], &fNb);
2170:       PetscFEGetNumComponents(fe, &Nc);
2171:     } else if (id == PETSCFV_CLASSID) {
2172:       PetscFV        fv = (PetscFV) obj;
2173:       PetscDualSpace Q;

2175:       PetscFVRefine(fv, &fvRef[f]);
2176:       PetscFVGetDualSpace(fvRef[f], &Q);
2177:       PetscDualSpaceGetDimension(Q, &fNb);
2178:       PetscFVGetNumComponents(fv, &Nc);
2179:     }
2180:     fTotDim += fNb*Nc;
2181:   }
2182:   PetscDSGetTotalDimension(prob, &cTotDim);
2183:   PetscMalloc1(cTotDim,&cmap);
2184:   for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
2185:     PetscFE        feC;
2186:     PetscFV        fvC;
2187:     PetscDualSpace QF, QC;
2188:     PetscInt       NcF, NcC, fpdim, cpdim;

2190:     if (feRef[field]) {
2191:       PetscDSGetDiscretization(prob, field, (PetscObject *) &feC);
2192:       PetscFEGetNumComponents(feC, &NcC);
2193:       PetscFEGetNumComponents(feRef[field], &NcF);
2194:       PetscFEGetDualSpace(feRef[field], &QF);
2195:       PetscDualSpaceGetDimension(QF, &fpdim);
2196:       PetscFEGetDualSpace(feC, &QC);
2197:       PetscDualSpaceGetDimension(QC, &cpdim);
2198:     } else {
2199:       PetscDSGetDiscretization(prob, field, (PetscObject *) &fvC);
2200:       PetscFVGetNumComponents(fvC, &NcC);
2201:       PetscFVGetNumComponents(fvRef[field], &NcF);
2202:       PetscFVGetDualSpace(fvRef[field], &QF);
2203:       PetscDualSpaceGetDimension(QF, &fpdim);
2204:       PetscFVGetDualSpace(fvC, &QC);
2205:       PetscDualSpaceGetDimension(QC, &cpdim);
2206:     }
2207:     if (NcF != NcC) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %d does not match coarse field %d", NcF, NcC);
2208:     for (c = 0; c < cpdim; ++c) {
2209:       PetscQuadrature  cfunc;
2210:       const PetscReal *cqpoints;
2211:       PetscInt         NpC;
2212:       PetscBool        found = PETSC_FALSE;

2214:       PetscDualSpaceGetFunctional(QC, c, &cfunc);
2215:       PetscQuadratureGetData(cfunc, NULL, NULL, &NpC, &cqpoints, NULL);
2216:       if (NpC != 1 && feRef[field]) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
2217:       for (f = 0; f < fpdim; ++f) {
2218:         PetscQuadrature  ffunc;
2219:         const PetscReal *fqpoints;
2220:         PetscReal        sum = 0.0;
2221:         PetscInt         NpF, comp;

2223:         PetscDualSpaceGetFunctional(QF, f, &ffunc);
2224:         PetscQuadratureGetData(ffunc, NULL, NULL, &NpF, &fqpoints, NULL);
2225:         if (NpC != NpF) continue;
2226:         for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
2227:         if (sum > 1.0e-9) continue;
2228:         for (comp = 0; comp < NcC; ++comp) {
2229:           cmap[(offsetC+c)*NcC+comp] = (offsetF+f)*NcF+comp;
2230:         }
2231:         found = PETSC_TRUE;
2232:         break;
2233:       }
2234:       if (!found) {
2235:         /* TODO We really want the average here, but some asshole put VecScatter in the interface */
2236:         if (fvRef[field]) {
2237:           PetscInt comp;
2238:           for (comp = 0; comp < NcC; ++comp) {
2239:             cmap[(offsetC+c)*NcC+comp] = (offsetF+0)*NcF+comp;
2240:           }
2241:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
2242:       }
2243:     }
2244:     offsetC += cpdim*NcC;
2245:     offsetF += fpdim*NcF;
2246:   }
2247:   for (f = 0; f < Nf; ++f) {PetscFEDestroy(&feRef[f]);PetscFVDestroy(&fvRef[f]);}
2248:   PetscFree2(feRef,fvRef);

2250:   DMGetGlobalVector(dmf, &fv);
2251:   DMGetGlobalVector(dmc, &cv);
2252:   VecGetOwnershipRange(cv, &startC, &endC);
2253:   PetscSectionGetConstrainedStorageSize(cglobalSection, &m);
2254:   PetscMalloc2(cTotDim,&cellCIndices,fTotDim,&cellFIndices);
2255:   PetscMalloc1(m,&cindices);
2256:   PetscMalloc1(m,&findices);
2257:   for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
2258:   for (c = cStart; c < cEnd; ++c) {
2259:     DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices);
2260:     for (d = 0; d < cTotDim; ++d) {
2261:       if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
2262:       if ((findices[cellCIndices[d]-startC] >= 0) && (findices[cellCIndices[d]-startC] != cellFIndices[cmap[d]])) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Coarse dof %d maps to both %d and %d", cindices[cellCIndices[d]-startC], findices[cellCIndices[d]-startC], cellFIndices[cmap[d]]);
2263:       cindices[cellCIndices[d]-startC] = cellCIndices[d];
2264:       findices[cellCIndices[d]-startC] = cellFIndices[cmap[d]];
2265:     }
2266:   }
2267:   PetscFree(cmap);
2268:   PetscFree2(cellCIndices,cellFIndices);

2270:   ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis);
2271:   ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis);
2272:   VecScatterCreate(cv, cis, fv, fis, sc);
2273:   ISDestroy(&cis);
2274:   ISDestroy(&fis);
2275:   DMRestoreGlobalVector(dmf, &fv);
2276:   DMRestoreGlobalVector(dmc, &cv);
2277:   PetscLogEventEnd(DMPLEX_InjectorFEM,dmc,dmf,0,0);
2278:   return(0);
2279: }